Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Geosci. Model Dev., 10, 1363-1381, 2017
http://www.geosci-model-dev.net/10/1363/2017/
doi:10.5194/gmd-10-1363-2017
© Author(s) 2017. This work is distributed
under the Creative Commons Attribution 3.0 License.
Model experiment description paper
31 Mar 2017
Global 7 km mesh nonhydrostatic Model Intercomparison Project for improving TYphoon forecast (TYMIP-G7): experimental design and preliminary results
Masuo Nakano1, Akiyoshi Wada2, Masahiro Sawada2, Hiromasa Yoshimura2, Ryo Onishi1, Shintaro Kawahara1, Wataru Sasaki1, Tomoe Nasuno1, Munehiko Yamaguchi2, Takeshi Iriguchi2, Masato Sugi2, and Yoshiaki Takeuchi2 1Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan
2Meteorological Research Institute, Japan Meteorological Agency, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan
Abstract. Recent advances in high-performance computers facilitate operational numerical weather prediction by global hydrostatic atmospheric models with horizontal resolutions of  ∼  10 km. Given further advances in such computers and the fact that the hydrostatic balance approximation becomes invalid for spatial scales  <  10 km, the development of global nonhydrostatic models with high accuracy is urgently required.

The Global 7 km mesh nonhydrostatic Model Intercomparison Project for improving TYphoon forecast (TYMIP-G7) is designed to understand and statistically quantify the advantages of high-resolution nonhydrostatic global atmospheric models to improve tropical cyclone (TC) prediction. A total of 137 sets of 5-day simulations using three next-generation nonhydrostatic global models with horizontal resolutions of 7 km and a conventional hydrostatic global model with a horizontal resolution of 20 km were run on the Earth Simulator. The three 7 km mesh nonhydrostatic models are the nonhydrostatic global spectral atmospheric Double Fourier Series Model (DFSM), the Multi-Scale Simulator for the Geoenvironment (MSSG) and the Nonhydrostatic ICosahedral Atmospheric Model (NICAM). The 20 km mesh hydrostatic model is the operational Global Spectral Model (GSM) of the Japan Meteorological Agency.

Compared with the 20 km mesh GSM, the 7 km mesh models reduce systematic errors in the TC track, intensity and wind radii predictions. The benefits of the multi-model ensemble method were confirmed for the 7 km mesh nonhydrostatic global models. While the three 7 km mesh models reproduce the typical axisymmetric mean inner-core structure, including the primary and secondary circulations, the simulated TC structures and their intensities in each case are very different for each model. In addition, the simulated track is not consistently better than that of the 20 km mesh GSM. These results suggest that the development of more sophisticated initialization techniques and model physics is needed to further improve the TC prediction.


Citation: Nakano, M., Wada, A., Sawada, M., Yoshimura, H., Onishi, R., Kawahara, S., Sasaki, W., Nasuno, T., Yamaguchi, M., Iriguchi, T., Sugi, M., and Takeuchi, Y.: Global 7 km mesh nonhydrostatic Model Intercomparison Project for improving TYphoon forecast (TYMIP-G7): experimental design and preliminary results, Geosci. Model Dev., 10, 1363-1381, doi:10.5194/gmd-10-1363-2017, 2017.
Publications Copernicus
Download
Short summary
Three 7 km mesh next-generation global models and a 20 km mesh conventional global model were run to improve tropical cyclone (TC) prediction. The 7 km mesh models reduce systematic errors in the TC track, intensity and wind radii predictions. However, the simulated TC structures and their intensities in each case are very different for each model. These results suggest that the development of more sophisticated initialization techniques and model physics is needed to further improvement.
Three 7 km mesh next-generation global models and a 20 km mesh conventional global model were...
Share