Articles | Volume 10, issue 2
https://doi.org/10.5194/gmd-10-991-2017
https://doi.org/10.5194/gmd-10-991-2017
Development and technical paper
 | 
01 Mar 2017
Development and technical paper |  | 01 Mar 2017

Efficiently modelling urban heat storage: an interface conduction scheme in an urban land surface model (aTEB v2.0)

Mathew J. Lipson, Melissa A. Hart, and Marcus Thatcher

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Mathew Lipson on behalf of the Authors (27 Jan 2017)  Author's response    Manuscript
ED: Publish as is (01 Feb 2017) by Jatin Kala
Download
Short summary
City-scale models describing the surface energy balance have difficulties representing heat storage in urban materials. This paper proposes an alternative method to discretise heat conduction through urban materials. We compare the new method with an approach commonly used in urban models and find the new method better matches exact solutions to heat transfer for a wide variety of urban material compositions. We also find the new method improves the bulk energy flux response of an urban model.