
MESSy CHANNEL User Manual
for the MESSy CHANNEL submodel

Patrick Jöckel1,2, Astrid Kerkweg3,

Andrea Pozzer4, Rolf Sander1, Holger Tost1,

Hella Riede1, Andreas Baumgaertner1,

Sergey Gromov1, Bastian Kern1

1 Air Chemistry Department, Max-Planck Institute of Chemistry, PO Box 3060,
55020 Mainz, Germany

2 Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der
Atmosphäre, Oberpfaffenhofen, 82230 Wessling, Germany

3 Institute for Atmospheric Physics, University Mainz, 55128 Mainz, Germany
4 Cyprus Institute, EEWRC, P.O. Box 27456, 1645 Nicosia, Cyprus

Patrick.Joeckel@dlr.de

This manual is part of the electronic supplement of our article “Development Cycle 2 of the Mod-
ular Earth Submodel System (MESSy2)” in Geosci. Model Dev. (2010), available at: http://www.
geoscientific-model-development.net

Date: November 27, 2010

2 P. Jöckel et al.: CHANNEL User Manual

Contents

1 Introduction 5

2 CHANNEL namelist user interface 5

2.1 CHANNEL CTRL namelist . 6

2.2 CHANNEL CPL namelist . 9

2.3 CHANNEL CTRL PNETCDF namelist . 10

3 Type definitions of basic entities 10

3.1 Attributes . 10

3.2 Dimension variables . 11

3.3 Dimensions . 12

3.4 Representations . 12

3.5 Channel objects . 14

3.6 Channels . 16

4 Error handling 19

5 Subroutines for handling the basic entities 19

5.1 The file messy main channel attributes.f90 . 19

5.1.1 The subroutine add attribute . 19

5.1.2 The subroutine write attribute . 20

5.1.3 The subroutine return attribute . 20

5.1.4 The subroutine delete attribute . 20

5.1.5 The subroutine copy attribute list . 20

5.1.6 The subroutine clean attribute list . 20

5.2 The file messy main channel dimvar.f90 . 21

5.2.1 The subroutine add dimvar . 21

5.2.2 The subroutine add dimvar att . 21

5.2.3 The subroutine write dimvar . 21

5.2.4 The subroutine get dimvar . 21

5.2.5 The subroutine delete dimvar . 22

5.2.6 The subroutine clean dimvar list . 22

5.3 The file messy main channel dimensions.f90 . 22

5.3.1 The subroutine new dimension . 22

5.3.2 The subroutine add dimension variable . 22

5.3.3 The subroutine update dimension variable . 23

5.3.4 The subroutine add dimension variable att . 23

5.3.5 The subroutine get dimension . 23

5.3.6 The subroutine get dimension info . 24

5.3.7 The subroutine write dimension . 24

5.3.8 The subroutine clean dimensions . 24

5.4 The file messy main channel repr.f90 . 25

5.4.1 The subroutine new representation . 25

P. Jöckel et al.: CHANNEL User Manual 3

5.4.2 The subroutine set representation decomp . 25

5.4.3 The subroutine write representation . 26

5.4.4 The subroutine write representation dc . 26

5.4.5 The subroutine get representation . 26

5.4.6 The subroutine get representation info . 27

5.4.7 The subroutine get representation id . 27

5.4.8 The subroutine clean representations . 27

5.4.9 The subroutine repr reorder . 27

5.4.10 The subroutine repr getptr . 28

5.5 The file messy main channel.f90 . 28

5.5.1 BMIL subroutines . 28

5.5.1.1 The subroutine main channel read ctrl . 28

5.5.1.2 The subroutine fixate channels . 28

5.5.1.3 The subroutine trigger channel output . 29

5.5.1.4 The subroutine update channels . 29

5.5.1.5 The subroutine clean channels . 29

5.5.2 SMIL subroutines for channels . 29

5.5.2.1 The subroutine new channel . 29

5.5.2.2 The subroutine write channel . 30

5.5.2.3 The subroutine get channel info . 30

5.5.2.4 The subroutine get channel name . 30

5.5.2.5 The subroutine set channel output . 31

5.5.2.6 The subroutine set channel newfile . 31

5.5.3 SMIL subroutines for channel objects . 31

5.5.3.1 The subroutine new channel object . 31

5.5.3.2 The subroutine get channel object . 32

5.5.3.3 The subroutine get channel object info . 32

5.5.3.4 The subroutine new channel object reference . 32

5.5.3.5 The subroutine set channel object restreq . 33

5.5.3.6 The subroutine get channel object dimvar . 33

5.5.4 SMIL subroutines for attributes . 33

5.5.4.1 The subroutine new attribute . 33

5.5.4.2 The subroutine get attribute . 34

5.5.4.3 The subroutine write attribute . 35

6 Channels and tracer 35

6.1 The file messy main channel tracer.f90 . 35

6.1.1 The subroutine create tracer channels . 35

6.1.2 The subroutine set channel or tracer . 36

4 P. Jöckel et al.: CHANNEL User Manual

7 Input/Output 36

7.1 The file messy main channel io.f90 . 36

7.1.1 The subroutine initialize parallel io . 36

7.1.2 The subroutine channel init restart . 36

7.1.3 The subroutine channel init io . 37

7.1.4 The subroutine channel write header . 37

7.1.5 The subroutine channel write time . 37

7.1.6 The subroutine channel write data . 38

7.1.7 The subroutine channel finish io . 38

7.1.8 The subroutine channel read data . 39

7.2 The file messy main channel netcdf.f90 . 39

7.2.1 The subroutine ch netcdf init rst . 39

7.2.2 The subroutine ch netcdf init io . 39

7.2.3 The subroutine ch netcdf write header . 40

7.2.4 The subroutine ch netcdf write time . 40

7.2.5 The subroutine ch netcdf write data . 40

7.2.6 The subroutine ch netcdf finish io . 41

7.2.7 The subroutine ch netcdf read data . 41

7.3 The file messy main channel pnetcdf.f90 . 41

7.3.1 The subroutine ch pnetcdf init pio . 41

7.3.2 The subroutine ch pnetcdf init rst . 42

7.3.3 The subroutine ch pnetcdf init io . 42

7.3.4 The subroutine ch pnetcdf write header . 42

7.3.5 The subroutine ch pnetcdf write time . 42

7.3.6 The subroutine ch pnetcdf write data . 43

7.3.7 The subroutine ch pnetcdf finish io . 43

7.3.8 The subroutine ch pnetcdf read data . 43

7.4 The implementation of alternative input / output formats . 43

8 A documented example 44

References 46

P. Jöckel et al.: CHANNEL User Manual 5

1 Introduction

This document describes some more details of the MESSy infrastructure submodel CHANNEL for the coupling of
processes in Earth System Models. CHANNEL provides the application programming interface (API) of a comfortable
and powerful memory management, suitable for the flexible and efficient data exchange / data sharing between different
processes (submodels). CHANNEL further serves the input / output of data from / into files, entirely controllable via
namelists. The implemented features comprise

• a full input / output control (user interface) via Fortran95 namelists,

• a powerful restart facility for simulation chains,

• output redirection for tailor made output files,

• a flexible choice of the output file format, the output method and the output precision, and

• the capability to conduct basic statistical analyses w.r.t. time on-line, i.e., to output in addition (or alternative) to
the instantaneous data the average, standard deviation, minimum, maximum, event counts, and event averages.

For the application of a base model, which contains already the CHANNEL infrastructure, the user interface (namelist
control) is explained in Sect. 2.

All other sections provide a reference for the implementation of the CHANNEL infrastructure into new basemodels
(in particular Sects. 4, 5.5.1, 6 and 7.4), and for the application of the CHANNEL infrastructure in submodels, when
the basemodel already contains the CHANNEL infrastructure.

CHANNEL is written in Fortran95 (ISO/IEC-1539-1) following an object oriented approach to the extent possible.
The basic entities (implemented as Fortran95 structures) in CHANNEL are

• attributes, → time independent, scalar characteristics,

• dimension variables, → specific coordinate axes,

• dimensions, → the basic geometry in one dimension

• representations, → multidimensional geometric structures (based on dimensions),

• channel objects, → data fields including their meta information (attributes) and their underlying geometric
structure (representation)

• channels, → sets of “related” channel objects with additional meta information. The “relation” can be, for
instance, the simple fact that the channel objects are defined by the same submodel.

These structures are explained in more detail in Sect. 3 for reference. Direct access to the structures is not required,
since CHANNEL provides a powerful application programming interface (API), as explained in Sects. 4 and 5. The
specific coupling of the MESSy infrastructure submodel TRACER to CHANNEL is explained in Sect. 6.

For data input / output, currently interfaces for netCDF1 and parallel netCDF2 are implemented, the implementation
of alternative file formats is straightforward due to the modular structure of CHANNEL. This is further explained in
Sect. 7.

2 CHANNEL namelist user interface

According to the MESSy standard (Jöckel et al., 2005)3, the user interface of the submodel CHANNEL is subdivided
into a control (CTRL) and a coupling (CPL) namelist, where the latter contains base model specific control parameters
and a coupling to the MESSy infrastructure submodel TIMER for the time control of output files. Both namelists are
contained in the namelist file channel.nml.

1http://www.unidata.ucar.edu/software/netcdf
2http://www.mcs.anl.gov/parallel-netcdf
3http://www.atmos-chem-phys.net/8/1677

6 P. Jöckel et al.: CHANNEL User Manual

2.1 CHANNEL CTRL namelist

The CTRL namelist comprises entries to control the output and restart handling for all channels and channel objects.
An example is given in Figure 1.

&CTRL

!

EXP_NAME=’test’ ! EXPERIMENT NAME

!

L_FLUSH_IOBUFFER = F, ! FLUSH I/O BUFFER IN EVERY TIME STEP

! (DEFAULT: T (true))

!

OUT_PREC = 1, 1, 1, 1, 1, 1, ! OUTPUT PRECISION (production)

!OUT_PREC = 1, 2, 2, 1, 1, 1, ! OUTPUT PRECISION (for tests)

!

! # SET DEFAULT OUTPUT AND RESTART HANDLING

! - ’’, OUTPUT-FILETYPE, RERUN-FILETYPE,

! NO. OF STEPS PER OUTPUT-FILE, RERUN, IGNORE,

! INST, AVE, STD, MIN, MAX, CNT, CAV, RANGE(2)

!

OUT_DEFAULT = ’’, 3, 3, -1, F,F, T,F,F,F,F, F,F, , ,

!

! # ADD NEW OUTPUT CHANNELS

ADD_CHANNEL(1) = ’special’,

ADD_CHANNEL(2) = ’carbon’,

!

! # ADD NEW CHANNEL OBJECT REFERENCES

! NOTES:

! - SOURCE OBJECT NAME MAY CONTAIN WILDCARDS ’?’ AND ’*’

! (in this case, target object name is ignored)

! - TARGET CHANNEL NAME MAY CONTAIN WILDCARDS ’?’ AND ’*’

! - TARGET OBJECT NAME SET TO SOURCE OBJECT NAME, IF ’’

!

ADD_REF(1) = ’g3b’, ’aps’, ’*’, ’’,

ADD_REF(2) = ’g3b’, ’geopot’, ’tracer_gp’, ’geop’,

ADD_REF(3) = ’tracer_gp’,’C*’, ’carbon’, ’’,

!

! # SET CHANNEL SPECIFIC DEFAULT OUTPUT AND RESTART HANDLING

! - channel-name, OUTPUT-FILETYPE, RERUN-FILETYPE,

! NO. OF STEPS PER OUTPUT-FILE, RERUN, IGNORE,

! INST, AVE, STD, MIN, MAX, CNT, CAV, RANGE(2)

! NOTE: IF NO. OF STEPS PER OUTPUT-FILE <= 0,

! THE EVENT TRIGGER (CPL-NAMELIST, TIMER_TNF BELOW)

! CONTROLS THE FILE CONTENT

!

OUT_CHANNEL(1) = ’g3b’, 3, 3, 10, F,F, T,F,F,F,F, F,F, , ,

OUT_CHANNEL(2) = ’qtimer’, 3, 3, -1, F,F, T,T,T,T,T, F,F, , ,

OUT_CHANNEL(3) = ’special’,3, 3, -1, F,F, F,T,F,F,F, F,F, , ,

!

! # SET CHANNEL OBJECT SPECIFIC OUTPUT AND RESTART HANDLING

! - channel-name, object-name, RERUN, IGNORE,

! INST, AVE, STD, MIN, MAX, CNT, CAV, RANGE(2)

!

OUT_OBJECT(1) = ’g3b’, ’aps’, F,F, T,F,F,F,F, F,F, , ,

OUT_OBJECT(2) = ’carbon’,’C2H4’, F,T, T,T,F,F,F, F,F, , ,

/

Figure 1: Example CTRL namelist of the generic submodel CHANNEL. For explanations, see text.

Four entries control the overall output:

• EXP NAME is an arbitrary string (of maximum 15 characters) which defines the simulation. This string (padded
with trailing underscores) represents the first part of the output filenames, followed by an underscore. The
output filename is completed by the simulation date and time (format YYYYMMDD hhmm) of the first entry in the
file, another underscore, the name of the channel, and the file format specific extension (including the dot), in
summary EXP NAME YYYYMMDD hhmm channel.ext.
Example: EXP NAME = ’test’,

P. Jöckel et al.: CHANNEL User Manual 7

results for instance in the netCDF (.nc) filename test____________20090101_0030_tracer_gp.nc for the
channel tracer gp. The first output time step in this file corresponds to the simulation time January 1, 2009
at 00:30 UTC.

• L FLUSH IOBUFFER is a logical switch, which controls the flushing of the output memory buffers. If set to T
(default) the output buffers of all output files are flushed at the end of each output time step, otherwise (F) the
flushing is determined by the runtime environment (i.e., if the buffer is full). For instance, if netCDF is used
as output format, flushing every output time step might reduce the overall runtime performance, however, it
guarantees valid files even after a crash of the simulation.
Example: L FLUSH IOBUFFER = T,

• OUT PREC is a one dimensional array of length 6 for setting the output precision for the output file formats (ASCII,
parallel netCDF, netCDF, GRIB, HDF4, HDF5), respectively. Currently only netCDF and parallel netCDF are
implemented. For netCDF and parallel netCDF, 1 sets the output to NF90 FLOAT and 2 to NF90 DOUBLE, respec-
tively. Output in double precision is helpful for performing restart-tests, i.e., for checking that the simulation
results are independent of the chosen restart frequency in simulation chains.
Example: OUT PREC = 1,2,1,1,1,1,

• OUT DEFAULT is a structure controlling the default output settings of all channels and channel objects; the elements
are

1. an empty string (this string is used for channel specific settings (see OUT CHANNEL below),

2. an integer to control the output file-type (currently only parallel netCDF (2) and netCDF (3) are imple-
mented),

3. an integer to control the restart file-type (currently only parallel netCDF (2) and netCDF (3) are imple-
mented),

4. an integer to control the maximum number of time-steps per output file (if this number is reached, a new
output-file is started),

5. a logical to force output into the restart file,

6. a logical to ignore, if an object is not present in a restart file, although required (this is useful if additional
submodels are switched on after a restart),

7. a logical to output instantaneous data (i.e., the values at the output time step, INST),

8. a logical to output the average w.r.t. time of the data between two subsequent output time steps (AVE),

9. a logical to output the standard deviation w.r.t. time of the data between two subsequent output time steps
(STD),

10. a logical to output the minimum w.r.t. time of the data between two subsequent output time steps (MIN),

11. a logical to output the maximum w.r.t. time of the data between two subsequent output time steps (MAX),

12. a logical to count (and output) the number of events defined by the data being within a specific range
between two subsequent output time steps (CNT),

13. a logical to average over the events defined by the data being within a specific range between two subsequent
output time steps (CAV),

14. a pair of real numbers describing the interval boundaries for CNT and CAV, the defaults are -HUGE(0.0 DP)
and HUGE(0.0 DP), respectively.

The corresponding variable names in the output (and restart) files are the channel object names extended by an
underscore and the suffixes (in lowercase) listed in parentheses, except for INST, for which no extension is used.
Example: OUT DEFAULT = ’’, 2, 2, 10, F,F, T,F,F,F,F, F,F, , ,
specifies parallel netCDF output as file-type for output (2) and restart files (2), respectively; a maximum of
10 output time steps are written to each output file. The objects without lrestreq=.TRUE. (see Sects. 3.5,
5.5.2.1 and 5.5.3.1) set in the code are not written to the restart files (F). After a restart channel objects with
lrestreq=.TRUE. which are not present in the respective restart file will not be ignored (F), but rather cause an
error. The instantatneous data of the channel objects are output (T), but none of the derived statistics (F,F,F,F,
F,F). The standard range for the conditional statisitcs (CNT and CAV) remains default (, ,).

The settings in OUT DEFAULT can be overwritten for specific channels and / or specific channel objects, respectively:

8 P. Jöckel et al.: CHANNEL User Manual

• OUT CHANNEL(n) is used for channels, where n is an arbitrary but unique number between 1 and 500. The same
entries (1-14) as in OUT DEFAULT are used, but the empty string (entry 1) is replaced by the name of the channel.
Example: OUT CHANNEL(1) = ’geoloc’, 2, 2, 10, F,F, F,F,F,F,F, F,F, , ,

• OUT OBJECT(n) is used for channel objects, where n is an arbitrary but unique number between 1 and 1000. The
entries correspond to the entries 5-14 of OUT DEFAULT, preceded by two strings denoting the name of the channel
and the name of the channel object, respectively.
Example: OUT OBJECT(1) = ’g3b’,’qtnew’, F,F, F,F,F,F,F, F,F, , ,

In a standard setup, all channel objects in a specific channel, which are subject to output (i.e., for which not all of
the output flags above (entries 7-13) are F), are written to the same output file. The possibility exists, however, to
re-direct the output of channel objects into different output files by creating channel object references in the namelist
with the variable

• ADD REF(n), where n denotes an arbitrary but unique number between 1 and 500 and each reference consists of
four strings denoting

– the name of the original channel which contains the channel object to be referenced,

– the name of the channel object to be referenced,

– the name of the target channel, i.e., the channel the object should be referenced from,

– the name of the channel object in the referencing channel. If this entry is empty, the original name of the
channel object is used.

Example: ADD REF(1) = ’g3b’, ’aps’, ’tracer gp’, ’ps’,
creates in channel tracer gp a reference (with name ps, to the channel object aps of channel g3b.

A special feature is that the name of the target channel can contain wildcards (’*’ or ’?’). The channel object reference
is then created in every channel with matching name. For example
ADD REF(1) = ’g3b’, ’aps’, ’*’, ’’,
creates in every channel (*) a reference (with name aps, since the last string is empty, ’’) to the channel object aps
of channel g3b.

Also the name of the channel object to be referenced can contain wildcards (’*’ or ’?’). In this case, all matching
channel objects from the original channel will be referenced from the target channel – with the name of the original
channel object. This implies that in this case, a potentially specified channel object name in the referencing channel
(4th entry) is ignored. For example
ADD REF(2) = ’tracer gp’, ’C*’, ’carbon’, ’’,
creates in the carbon channel references for all channel objects of the tracer gp channel which names start with ’C’.

The channel object reference(s) share(s) with the original channel object the memory for the primary data, i.e.,
no additional memory is consumed. Memory for secondary (derived statistical) data, however, is created for each
channel object reference as it is requested by the corresponding namelist entries (OUT DEFAULT, OUT CHANNEL(n),
OUT OBJECT(n)). This additional memory is required to allow independent output time intervals and statistics for the
channel object reference(s).

In addition to the creation of channel object references for output redirection into other already existing channels, also
new channels can be created with the namelist variable

• ADD CHANNEL(n), where n denotes an arbitrary but unique number between 1 and 50, and each new channel is
specified by its unique name.
Example: ADD CHANNEL(1) = ’special’,

As indicated above (entry 4 of OUT DEFAULT and / or OUT CHANNEL(n)), the size of the output files is controlled via
the maximum number of time steps per file. If this number is set to zero or negative, the files are controlled via the
entries in the CPL namelist as described in the next section.

P. Jöckel et al.: CHANNEL User Manual 9

&CPL

!

L_BM_ORIG_OUTPUT = F, ! ENABLE ORIGINAL LEGACY MODEL OUTPUT ?

!

! # SET OUTPUT INTERVALS FOR ALL CHANNELS (DEFAULT + INDIVIDUAL)

! NOTE: First match (wildcard) counts!

!

TIMER_DEFAULT = ’’, 5, ’hours’, ’first’, 0,

!

TIMER_CHANNEL(1) = ’qtimer’, 1, ’steps’, ’first’, 0,

TIMER_CHANNEL(2) = ’scout’, 1, ’hours’, ’first’, 0,

TIMER_CHANNEL(3) = ’special’, 1, ’months’, ’first’, 0,

!

! # SET TIMER EVENTS FOR NEW FILENAMES

! (IF NO. OF STEPS PER OUTPUT-FILE <= 0 ABOVE !!!)

! NOTE: First match (wildcard) counts!

!

TIMER_TNF_DEFAULT = ’’, 1, ’days’, ’first’, 0,

!

TIMER_TNF_CHANNEL(1) = ’qtimer’, 1, ’days’, ’first’, 0

TIMER_TNF_CHANNEL(2) = ’scout*’, 1, ’months’, ’first’, 0

!

/

Figure 2: Example CPL namelist of the generic submodel CHANNEL. For explanations, see text.

2.2 CHANNEL CPL namelist

An example for the CPL namelist of CHANNEL is given in Figure 2.

The CPL namelist of CHANNEL provides the switch L BM ORIG OUTPUT (default F) to enable (T) the original output
of the basemodel, in case the base model supports this.

The more important features, however, are provided by a coupling to the MESSy infrastructure submodel TIMER.
This enables the control of the output frequency and the file sequence containing a time series.

The default output frequency for all channels is set by the variable TIMER DEFAULT, which can be overwritten for each
channel by the variable TIMER CHANNEL(n), where n indicates an arbitrary but unique number between 1 and 500.
The frequency to create new files is set by the variable TIMER TNF DEFAULT (default) for all channels, and overwritten
for specific channels by the variable TIMER TNF CHANNEL(n), respectively. Also here n denotes an arbitrary but unique
number between 1 and 500.

All four variables consist of

• the name of the channel, which is empty for the DEFAULT variables,

• an event trigger, which consists of

– the length of the time interval (integer),
– the unit of the time interval (string), e.g., ’steps’, ’minutes’, ’hours’, ’days’, ’months’, ’years’,
– the positioning of the triggering time step in the given interval, i.e., ’first’, ’last’, or ’exact’,
– an offset in seconds (integer), which is usually zero.

As an example, the namelist entry

TIMER_CHANNEL(1) = ’g3b’, 5, ’hours’, ’first’, 0

triggers the output of all channel objects in the channel ’g3b’, for which output is requested, at the ’first’ time step in
every 5 hours with no offset. The entry

TIMER_TNF_DEFAULT = ’’, 1, ’days’, ’first’, 0,

triggers a new file creation per default for all channels at the ’first’ time step of every day without offset.

This feature for controlling new file creation is only active, however, for those channels, for which the number of time
steps per output file in the CTRL namelist (entry 4 of OUT DEFAULT and / or OUT CHANNEL(n)) is set to zero or negative.

10 P. Jöckel et al.: CHANNEL User Manual

2.3 CHANNEL CTRL PNETCDF namelist

The CTRL PNETCDF namelist comprises entries to tune the performance of the parallel netCDF output via MPI-IO
hints in the form MPI IO HINT(n) = hint,value where n denotes an arbitrary but unique number between 1 and 10,
hint is the name of the MPI-IO hint, and value its value. Example:

&CTRL_PNETCDF
MPI_IO_HINT(1) = ’IBM_sparse_access’,’true’,

/

3 Type definitions of basic entities

The basic entities used within the MESSy CHANNEL infrastructure submodel are

• attributes,

• dimension variables,

• dimensions,

• representations,

• channel objects,

• channels.

These entities are hierarchically organised in a way that a higher entity (later in list) can make use of a lower entity
(earlier in list). This section provides a complete reference of the corresponding Fortran95 structures. It is important
to note that the application of the MESSy submodel CHANNEL does not require any direct access to these structures
in the code. Application of the submodel CHANNEL is possible by exclusive usage of the interface subroutines which
are explained in the subsequent sections.

Figure 3 sketches the relationship between the different entities and the corresponding Fortran95 modules.

Fortran parameters defined in messy main constants mem.f90 used for the type declarations are:

! PRECISION SETTINGS
INTEGER, PARAMETER :: DP = SELECTED_REAL_KIND(12,307)
INTEGER, PARAMETER :: I8 = SELECTED_INT_KIND(14)

! STRING LENGTHs
INTEGER, PARAMETER :: STRLEN_SHORT = 8
INTEGER, PARAMETER :: STRLEN_MEDIUM = 24
INTEGER, PARAMETER :: STRLEN_LONG = 64
INTEGER, PARAMETER :: STRLEN_VLONG = 80
INTEGER, PARAMETER :: STRLEN_ULONG = 256

3.1 Attributes

An attribute describes a time independent, scalar characteristic of a higher entity. The information is stored in a
Fortran95 structure:

TYPE t_attribute
CHARACTER(LEN=STRLEN_MEDIUM) :: name = ’’
INTEGER :: type = TYPE_UNKNOWN
INTEGER :: iflag = AF_NONE
INTEGER :: i = 0
CHARACTER(LEN=STRLEN_ULONG) :: c = ’’
REAL(DP) :: r = 0.0_DP

END TYPE t_attribute

P. Jöckel et al.: CHANNEL User Manual 11

attributes

dimension

variables

dimensions

error channel

representations

io

netcdf

pnetcdf

...

BMIL / SMIL

Figure 3: Relationship between the various channel entities and Fortran95 modules: The boxes represent the differ-
ent Fortran95 modules of CHANNEL, the corresponding filenames are messy main channel bf.f90, where bf is the
respective bold-face text. The arrows indicate where the different modules are USEd. Different output formats /
methods (netcdf, pnetcdf (for parallel-netCDf), and other formats / methods indicated by the dots) are summarised
in a common box for the sake of readability to reduce the number of arrows. Similarly, the empty box summarises
similar uses of the connected modules. BMIL and SMIL denote the basemodel layer and the submodel interface layer,
respectively.

Attributes are identified by their name and are of a unique type (pre-defined with the Fortran95 parameter TYPE UNKNOWN),
which is either INTEGER (parameter TYPE INTEGER), REAL(DP) (parameter TYPE REAL DP) or
CHARACTER(LEN=STRLEN ULONG) (parameter TYPE STRING). A set of attributes of a higher entity is stored in a con-
catenated list of attributes:

TYPE t_attribute_list
TYPE(t_attribute) :: this
TYPE(t_attribute_list), POINTER :: next => NULL()

END TYPE t_attribute_list

Basic subroutines for managing attributes and attribute lists are contained in the Fortran95 module
messy main channel attributes.f90 (Sect. 5.1). The Fortran95 module messy main channel.f90 (Sect. 5.5) con-
tains additional subroutines for handling attribute lists of higher entities.

3.2 Dimension variables

A dimension variable contains the information of a discrete coordinate, such as an axis of a spatial dimension (e.g.,
latitude). The required information is stored in a Fortran95 structure:

TYPE t_dimvar
CHARACTER(LEN=STRLEN_MEDIUM) :: name = ’’ ! NAME OF VARIABLE
REAL(DP), DIMENSION(:), POINTER :: val => NULL() ! VALUES
TYPE(t_attribute_list), POINTER :: att => NULL() ! ATTRIBUTE LIST

END TYPE t_dimvar

12 P. Jöckel et al.: CHANNEL User Manual

Each dimension variable is identified by its name. The coordinate values are stored in the array val. The attribute
list contains further information, such as for instance the unit of the coordinate values (e.g., “unit”=”degrees north”
for the latitude).

Dimension variables are necessarily associated with dimensions (Sect. 3.3). Since more than one dimension variable can
be associated with a specific dimension, lists of dimension variables are stored in a concatenated Fortran95 structure:

TYPE t_dimvar_list
TYPE(t_dimvar) :: this
TYPE(t_dimvar_list), POINTER :: next => NULL()

END TYPE t_dimvar_list

Subroutines for managing dimension variables and dimension variable lists are contained in the Fortran95 module
messy main channel dimvar.f90 (Sect. 5.2).

3.3 Dimensions

The term dimension is self-explanatory. The structure is:

TYPE t_dimension
CHARACTER(LEN=STRLEN_MEDIUM) :: name = ’’ ! NAME OF DIMENSION
INTEGER :: id = DIMID_UNDEF ! ID OF DIMENSION
INTEGER :: len = 0 ! LENGTH OF DIMENSION
LOGICAL :: ltime = .FALSE. ! FLAG FOR TIME DIM.
TYPE(t_dimvar_list), POINTER :: var => NULL() ! DIMENSION VARIABLES

END TYPE t_dimension

A dimension is identified by its unique name and identifier (id). The basic information hold by a dimension is its length
(len), which is the number of discrete steps along the axis. A special flag is used to indicate that the dimension is
the time dimension (ltime). Specific coordinate values may be stored in a list of dimension variables (var, Sect. 3.2).

All dimensions are stored internally in one list. Subroutines for managing dimensions are contained in the Fortran95
module messy main channel dimensions.f90 (Sect. 5.3).

3.4 Representations

A representation describes the underlying geometric structure of data. The required information is stored in a Fortran95
structure:

TYPE t_representation
! IDENTIFICATION
CHARACTER(LEN=STRLEN_MEDIUM) :: name = ’’ ! NAME
INTEGER :: id = 0 ! ID
INTEGER :: rank = 0 ! RANK
CHARACTER(LEN=IRANK) :: link = ’’ ! LINK-STRING
CHARACTER(LEN=IRANK) :: axis = ’’ ! AXIS-STRING
INTEGER, DIMENSION(IRANK) :: gdimlen = 0 ! GLOBAL DIMENSION LENGTH
!
! DECOMPOSITION INFORMATION
INTEGER, DIMENSION(IRANK) :: ldimlen = 0 ! LOCAL DIMENSION LENGHT (ON THIS PE)
INTEGER :: dctype = 0 ! DECOMPOSTION TYPE
!
! FULL DIMENSION INFORMATION (POINTER TO DIMENSION; GLOBAL !!!)
TYPE(t_dimension_ptr), DIMENSION(IRANK) :: dim
!
! INPUT/OUTPUT CONVERSION
! - PERMUTATION OF DIMENSIONS BEFORE OUTPUT

P. Jöckel et al.: CHANNEL User Manual 13

LOGICAL :: lperm = .FALSE.
INTEGER, DIMENSION(IRANK) :: order_mem2out = 0 ! output
INTEGER, DIMENSION(IRANK) :: shape_out = 0 ! shape in output
INTEGER, DIMENSION(IRANK) :: order_out2mem = 0 ! input
!
! BOUNDARY MEMORY MANAGEMENT
TYPE(t_repr_boundary) :: bounds
!
! PARALLEL DECOMPOSITION INFORMATION
TYPE(t_repr_pdecomp) :: pdecomp
!

END TYPE t_representation

Each representation is identified by a unique name and identifier (id). The rank of the data determines the number of
dimensions (dim) that span the representation. All channel object data are internally stored in arrays of rank IRANK
(=4). This implies that representations can be of rank 0 (scalar) to 4. The internal ranks used by the data (active
dimensions) are stored in link. Active ranks are marked by ’x’, inactive ranks by ’-’. For example, ’xx--’, ’x-x-’, ’x--x’,
’-xx-’, etc. are valid links for data of rank 2. The corresponding dimension lengths are stored in gdimlen.

Specific geometric axes are identified with axis, ’X’, ’Y’ and ’Z’ denote the spatial axes, ’N’ an arbitrary index axis,
and ’-’ must be used, if the axis has no specific meaning. For instance ’XYZ-’ will identify that the ranks 1 to 3 of the
representation correspond to the Eulerian spatial dimensions. This information can be used for generic transformation
and transposition routines.

In parallel environments, data can be distributed to several processes. The ’local’ (i.e., parallel decomposed) dimension
length is stored in ldimlen. The flag dctype is used to identify the corresponding subroutines for collecting data from
all parallel processes (gather) and for distributing data to all parallel processes (scatter), respectively.

Depending on the output format and the memory layout, it might be desirable to reshape data arrays for output. The
vectors shape mem and shape out describe the array dimensions in memory and output, respectively. If it is required
to permute ranks between memory and output, this is indicated by lperm. The corresponding permutations are stored
in order mem2out for output, and order out2mem for input, respectively.

Another feature, which is useful for parallel decompostions, is the possibility to increase the ’local’ (i.e., parallel
decomposed) dimension length by additional boundary points, sometimes called ’ghost’ points. These are for instance
applied, if gradients along the specific dimension are required for the calculations over the parallel processes. The data
on these boundaries are then regularly exchanged by the ’neighbouring’ parallel processes. Information about such
additional local boundaries are stored in the structure component bounds, which itself is a Fortran95 structure:

TYPE t_repr_boundary
! HOLDS INFORMATION ABOUT BOUNDARIES
LOGICAL :: lbounds = .FALSE.
!
! number of boundary indices
INTEGER, DIMENSION(IRANK) :: nbounds = 0
!

END TYPE t_repr_boundary

lbounds is .TRUE., if the corresponding representation has been defined with additional local boundaries in at least
one dimension. Without additional local boundaries lbounds is .FALSE.. nbounds contains the number of additional
points (always symmetrically added at both ends) for each dimension.

If the system is capable for parallel input / output (e.g., parallel netCDF, Sect. 7.3) additional decomposition infor-
mation is stored in pdecomp, a Fortran95 structure that maps contiguous sub-arrays (segments) to the global output
array:

TYPE t_repr_pdecomp
! HOLDS INFORMATION ABOUT PRALLEL DECOMPOSITION
LOGICAL :: lpdecomp = .FALSE. ! info available ?
!

14 P. Jöckel et al.: CHANNEL User Manual

! (UN-DEFORMED (e.g. DE-VECTORISED)) SHAPE IN MEMORY
INTEGER,DIMENSION(IRANK) :: shape_mem = 0 ! shape in memory (local)
INTEGER,DIMENSION(IRANK) :: shape_out = 0 ! shape for output (local)
!
! MAPPING BETWEEN GLOBAL AND LOCAL
INTEGER :: nseg = 0 ! number of segments
INTEGER, DIMENSION(:,:), POINTER :: ml => NULL() ! lower bounds in mem
INTEGER, DIMENSION(:,:), POINTER :: mu => NULL() ! upper bounds in mem
INTEGER, DIMENSION(:,:), POINTER :: start => NULL() ! start in output
INTEGER, DIMENSION(:,:), POINTER :: cnt => NULL() ! count in output
!
! SPECIAL FOR PERFORMANCE TUNING ...
INTEGER :: piotype = PIOTYPE_IND
!

END TYPE t_repr_pdecomp

If the additional decomposition information is not provided for a specific representation with the subroutine
set representation decomp (see Sect. 5.4.2), lpdecomp remains .FALSE. and parallel input / output is not possible.
The array shapes in memory and for the output are stored in shape mem and shape out, respectively. The number of
contiguous segments (in the output array) for the specific parallel process is nseg. Each segment is described by its
bounds in memory (ml and mu) and its start and count (cnt) index vectors in the output array. The parallel output
type (piotype) can be PIOTYPE SGL for single process input / output, PIOTYPE IND for independent input / output,
and PIOTYPE COL for collective input / output.

All representations are stored centrally in one list. Subroutines for managing representations are contained in the
Fortran95 module messy main channel repr.f90 (Sect. 5.4).

3.5 Channel objects

A channel object describes data and its meta information defined in a Fortran95 structure:

TYPE t_channel_object
CHARACTER(LEN=STRLEN_OBJECT) :: name = ’’ ! NAME
TYPE(t_attribute_list), POINTER :: att => NULL() ! OBJECT ATTRIBUTES
TYPE(t_representation), POINTER :: repr => NULL() ! REPRESENTATION
TYPE(t_channel_object_mem) :: memory ! MEMORY MANAGEMENT
TYPE(t_channel_object_io) :: io ! I/O MANAGEMENT
! ABSOLUTELY REQUIRED IN RESTART FILE ?
LOGICAL :: lrestreq = .FALSE.
TYPE(t_channel_object_int) :: int ! FOR INTERNAL USE
REAL(DP), DIMENSION(:,:,:,:), POINTER :: data => NULL() ! DATA
TYPE(PTR_4D_ARRAY), DIMENSION(:), POINTER :: sdat => NULL() ! 2ndary DATA
! POINTER TO REGION WITHOUT BOUNDARIES FOR I/O
REAL(DP), DIMENSION(:,:,:,:), POINTER :: ioptr => NULL()

END TYPE t_channel_object

A channel object is identified by a unique name (the string length STRLEN OBJECT is 2*STRLEN MEDIUM + 5) in this
specific channel, additional properties are described by a list of attributes (att, Sect. 3.1) and the underlying geometric
structure is described by a pointer to the corresponding representation (repr, Sect. 3.4). Whether a channel object
is required to be dumped into a restart file for chain simulations or not, is controlled by the switch lrestreq. The
pointer data points to the primary data memory, the pointer array sdat to the secondary (derived statistical) data
memory, respectively. The pointer ioptr (internally used for I/O) points to the internal sector (i.e., the part inside the
additional boundaries) of the primary data memory, in case the underlying representation is specified with additional
boundaries. If no boundaries are present, ioptr is identical with data.

The Fortran95 structure memory

P. Jöckel et al.: CHANNEL User Manual 15

TYPE t_channel_object_mem
!
! MEMORY USAGE
INTEGER(I8) :: usage = 0_I8 ! primary data section
INTEGER(I8) :: usage_2nd = 0_I8 ! secondary data section
!
! FLAGS FOR INTERNAL USE
LOGICAL :: lalloc = .FALSE. ! AUTOMATIC MEMORY ALLOCATION

END TYPE t_channel_object_mem

holds information about the memory usage for primary data (usage) and secondary (derived statistical) data (usage 2nd).
The logical lalloc is .TRUE., if the memory is allocated internally by the CHANNEL interface, and .FALSE.,
if the memory is pre-allocated externally and specified by the parameter mem in subroutine new channel object
(Sect. 5.5.3.1).

The Fortran95 structure io stores all information required to control the input / output of the channel object:

TYPE t_channel_object_io
!
! RESTART HANDLING
LOGICAL :: lrestart = .FALSE. ! OUTPUT TO RESTART FILE ?
LOGICAL :: lignore = .FALSE. ! IGNORE lrestreq ?
!
! OUTPUT FLAGS
LOGICAL, DIMENSION(SND_MAXLEN) :: lout = .FALSE.
! SPECIAL FOR CONDITIONAL COUNTER (CNT) / AVAERAGE (CAV)
REAL(DP), DIMENSION(2) :: range = &

(/ -HUGE(0.0_DP), HUGE(0.0_DP) /)
!

END TYPE t_channel_object_io

If the logical lrestart is .TRUE., the channel object is written to the channel specific restart file. With lignore=.TRUE.
the fact that a channel object is usually required for restart (lrestreq=.TRUE.) is ignored. This can for instance be
used, if a simulation is continued from restart files, but with additional submodels switched on. It can be controlled by
the CTRL-namelist of CHANNEL (Sect. 2.1). The output request for additional derived statistical data is switched by
lout; SND MAXLEN is the number of implemented statistics (currently 7: INST, AVE, STD, MIN, MAX, CNT, CAV).
The range of valid values (for the conditional counting (CNT) and / or averaging (CAV)) is stored in range.

The Fortran95 structure int is used to store additional information for internal use only:

TYPE t_channel_object_int
!
! OUTPUT AND RESTART
LOGICAL :: lout = .FALSE. ! ANY OUTPUT ?
LOGICAL :: lrst = .FALSE. ! ANY RESTART ?
LOGICAL :: lign = .FALSE. ! IGNORE lrestreq ?
LOGICAL :: lref = .FALSE. ! IS reference ?
! EXPORT DATA ?
LOGICAL, DIMENSION(SND_MAXLEN, IOMODE_MAX) :: lexp = .FALSE.
! ... MEMORY MANAGEMENT FOR PRIMARY AND SECONDARY DATA
INTEGER, DIMENSION(SND_MAXLEN) :: i2nd = 0 ! INDEX IN 2ndary DATA
INTEGER :: n2nd = 0 ! SECONDARY DATA DIMENSION
!
! MISC
! - FIELD HAS BEEN SET FROM RESTART FILE
LOGICAL, DIMENSION(SND_MAXLEN) :: lrestart_read = .FALSE.
!
! netCDF

16 P. Jöckel et al.: CHANNEL User Manual

TYPE(t_channel_object_netcdf), DIMENSION(IOMODE_MAX) :: netcdf
!
! +++ ADD OTHER OUTPUT FORMATS HERE
!

END TYPE t_channel_object_int

The logical lout is .TRUE., if output of primary or secondary (derived statistical) data is requested, lrst controls the
output into the channel specific restart file. If a channel object is requested from a restart file but not present, lign
is used, if this is to be ignored, e.g., triggered by a respective namelist entry (see Sect. 2.1). The fourth logical, lref,
is .TRUE., if the channel object is a reference to another channel object.

The two-dimensional logical array lexp controls the output of secondary (derived statistical) data. The first dimension
indicates the statistical quantity, and the second dimension the output mode. Currently two output modes are
implemented (IOMODE MAX = 2) for output and restart, rspectively

The number of secondary data fields for the channel object, i.e., the dimension of the sdat pointer array (see above), is
stored in n2nd, whereas the one-dimensional array i2nd contains the indices of the corresponding statistical quantities
in the sdat pointer array. The elements of the one-dimensional logical array lrestart read are set to .TRUE., if the
corresponding secondary data have been (re-)initialised from the restart-file.

The Fortran95 structure netcdf

! netCDF I/O (internal use only !)
TYPE t_channel_object_netcdf

! variable ID
INTEGER :: varid = NC_ID_UNDEF
! dimension IDs
INTEGER :: dimid(IRANK) = NC_ID_UNDEF
! IDs OF SECONDARY VARIABLES
INTEGER, DIMENSION(:), POINTER :: svarid => NULL()

END TYPE t_channel_object_netcdf

holds information required for the input / output from / into netCDF files, such as the netCDF variable identifier
(varid), the corresponding vector with netCDF dimension identifiers (dimid), and - if required - the additional netCDF
variable identifiers for the secondary derived statistical data (svarid). Similar structures for other input / output
formats might be introduced in the same way.

A multitude of channel objects contained in a channel (Sect. 3.6) is stored as a concatenated list of channel objects:

TYPE t_channel_object_list
TYPE(t_channel_object) :: this
TYPE(t_channel_object_list), POINTER :: next => NULL()

END TYPE t_channel_object_list

Basic subroutines for managing channel objects are contained in the Fortran95 module
messy main channel.f90 (Sect. 5.5).

3.6 Channels

A channel contains a set of channel objects and additional meta-information, implemented as a Fortran95 structure:

TYPE t_channel
! IDENTIFICATION
CHARACTER(LEN=STRLEN_CHANNEL) :: name = ’’ ! NAME
INTEGER :: id = 0 ! ID
TYPE(t_attribute_list), POINTER :: att => NULL() ! CHANNEL ATTRIBUTES
TYPE(t_channel_object_mem) :: memory ! MEMORY MANAGEMENT
TYPE(t_channel_io) :: io ! I/O
TYPE(t_channel_def) :: default ! OBJECT DEFAULTS

P. Jöckel et al.: CHANNEL User Manual 17

! INTERNAL
TYPE(t_channel_int) :: int ! FOR INTERNAL USE
!
! CHANNEL OBJECTS
TYPE(t_channel_object_list), POINTER :: list => NULL()

END TYPE t_channel

The list points to the concatenated list of channel objects; in empty channels, list is NULL. Every channel is identified
by its unique name and identifier (id), and can have channel specific attributes, which are stored in att (see Sect. 3.1).
The string length STRLEN CHANNEL is 2*STRLEN SHORT + 1.

In memory, a variable of the type

TYPE t_channel_object_mem
!
! MEMORY USAGE
INTEGER(I8) :: usage = 0_I8 ! primary data section
INTEGER(I8) :: usage_2nd = 0_I8 ! secondary data section
!
! FLAGS FOR INTERNAL USE
LOGICAL :: lalloc = .FALSE. ! AUTOMATIC MEMORY ALLOCATION

END TYPE t_channel_object_mem

contains information about the memory usage of the primary data (usage) and the secondary (derived statistical)
data (usage 2nd). The logical lalloc indicates, whether the memory is controlled (allocated / deallocated) internally
(.TRUE.), or externally (.FALSE.) by user-defined memory.

Superordinate input / output related information for all channel objects in the channel are stored in io, a variable of
type

TYPE t_channel_io
! OUTPUT FILE TYPE
INTEGER, DIMENSION(IOMODE_MAX) :: ftype = FTYPE_DEFAULT
! NO. OF TIME STEPS PER FILE (OUT)
INTEGER :: ntpf = 0
!

END TYPE t_channel_io

where ftype denotes the file type (format) of each output mode (output or restart), and ntpf denotes the number of
requested time-steps per output-file. This is one method to control the file size of output files (see Sects. 2.1 and 2.2).

Default values for channel objects in a specific channel can be pre-defined at channel definition, and are stored in
default, which is of type:

TYPE t_channel_def
!
! DEFAULT REPRESENTATION
INTEGER :: reprid = REPR_UNDEF
! DEFAULT: NOT REQUIRED IN RESTART
LOGICAL :: lrestreq = .FALSE.
! DEFAULT OUTPUT FLAGS
TYPE (t_channel_object_io) :: io
!

END TYPE t_channel_def

The identifier of the default representation (see Sect. 3.4) is stored in reprid. If the channel objects need to be saved
in the restart file, lrestreq is .TRUE.. And the default input / output settings are stored in io. All channel specific
defaults can be overwritten by the channel object definition.

For internal use only, additional information is stored in int:

18 P. Jöckel et al.: CHANNEL User Manual

TYPE t_channel_int
!
! OUTPUT AND RESTART
LOGICAL :: lout = .FALSE. ! OUTPUT ? ANY OBJECT ?
LOGICAL :: lrst = .FALSE. ! RESTART ? ANY OBJECT ?
LOGICAL :: lrestreq = .FALSE. ! ANY OBJECT REQUIRED IN RESTART
LOGICAL :: lign = .FALSE. ! IGNORE ALL (!) lrestreq ?
! - OUTPUT FILENAME : <EXPERIMENT (15)>_YYYYMMDD_HHMM_<CHANNEL>.<ext>
! - RESTART FILENAME: restart_<CHANNEL>.<ext>
CHARACTER(LEN=30+STRLEN_CHANNEL+4), DIMENSION(IOMODE_MAX) :: fname = ’’
!
! TIMER
LOGICAL :: lout_now = .FALSE. ! TIME MANAGER
INTEGER :: ntpfcnt = 0 ! COUNTER OF TIME STEPS PER FILE
LOGICAL :: lnew_file = .FALSE. ! OPEN NEW FILE ?
REAL(DP) :: tslo = 0.0_DP ! time [s] since last output
! FORCE OUTPUT (to be set by set_channel_output)
LOGICAL :: lforce_out = .FALSE.
! SUPPRESS OUTPUT (to be set by set_channel_output)
LOGICAL :: lsuppr_out = .FALSE.
! FORCE NEW FILE
LOGICAL :: lforce_newfile = .FALSE.
!
LOGICAL :: l2ndreinit1 = .TRUE.
LOGICAL :: l2ndreinit2 = .FALSE.
!
! netCDF
TYPE(t_channel_netcdf), DIMENSION(IOMODE_MAX) :: netcdf
!
! +++ ADD OTHER OUTPUT FORMATS HERE
!

END TYPE t_channel_int

The logicals lout and lrst are .TRUE., if at least one of the channel objects in the channel are to be output or saved
in the restart file, respectively. A similar flag, lrestreq, indicates if at least one of the channel objects in the channel
is required to be re-initialised from the restart file. And lign controls, if the restart requirements of all channel objects
in the channel shall be ignored. This is for instance useful, if an additional submodel is switched on after a model
simulation starting from restart files.

All channel objects in the channel are output to one common file, and likewise all channel objects in the channel, that
need to be saved for restart, are saved in one common restart file. The respective filenames (without format specific
extension) are stored in fname for both modes (output and restart).

The organisation of the channel output within the time loop of a simulation is controlled by several variables:
loutput now is .TRUE., if output is active in the present time step. The counter ntpfcnt counts the number of
output-time steps in the output-file; if lnew file is .TRUE., a new output file (with a new name) is started, instead
of appending further output time-steps to an existing file. For the secondary derived statistical analysis, tslo stores
the simulation time (in seconds) since the last output. The switches lforce out and lsuppr out are used to force or
suppress output in a time step, respectively, independent on the output control settings in the namelists (see Sects. 2.1
and 2.2). This is for instance required for specific diagnostic submodels. A similar switch, lforce newfile, is used
to force the creation of a new output file (instead of appending data to an existing one). The re-initialisation of the
secondary derived data after the output is controlled by l2ndreinit1 and l2ndreinit2.

File format specific information for netCDF files are stored in netCDF, another Fortran95 structure,

TYPE t_channel_netcdf
INTEGER :: fileID = NC_ID_UNDEF
INTEGER :: dimid_time = NC_ID_UNDEF

END TYPE t_channel_netcdf

P. Jöckel et al.: CHANNEL User Manual 19

which stores the netCDF file identifier (fileID) and the netCDF dimension identifier of the time dimension (dimid time).
Similar structures for other input / output formats might be introduced in the same way.
Finally, the complete set of channels is stored as a concatenated list of channels:

TYPE t_channel_list
TYPE(t_channel) :: this
TYPE(t_channel_list), POINTER :: next => NULL()

END TYPE t_channel_list

Basic subroutines for managing channels are contained in the Fortran95 module
messy main channel.f90 (Sect. 5.5).

4 Error handling

All subroutines of CHANNEL return the Fortran95 variable status, an INTENT(OUT) parameter of type INTEGER,
which indicates a status information of the respective subroutine. The status is 0, if the routine was successful,
and > 0, if an error occurred. The value of status can be transformed into an error message with the function
channel error str in module messy main channel error.f90:
FUNCTION channel error str (status)
name type intent description
mandatory arguments:
status INTEGER IN error status
channel error str CHARACTER(LEN=STRLEN VLONG) OUT error message

5 Subroutines for handling the basic entities

5.1 The file messy main channel attributes.f90

5.1.1 The subroutine add attribute

SUBROUTINE add attribute (status ,list ,name [,i] [,c] [,r]
[,loverwrite] [,iflag])

name type intent description
mandatory arguments:
status INTEGER OUT
list TYPE(t attribute list) POINTER list of attributes
name CHARACTER(LEN=*) IN name of new attribute
optional arguments:
i INTEGER IN integer value of attribute
c CHARACTER(LEN=*) IN string value of attribute
r REAL(DP) IN real value of attribute
loverwrite LOGICAL IN overwrite if attribute exists?
iflag INTEGER IN check attribute at initialisation

With this subroutine, the attribute name is added to the attribute list list. The type of the attribute is specified by
value assignment to the corresponding optional argument for INTEGER (i), string (CHARACTER, c) or REAL(DP)
(r), respectively. With the optional argument loverwrite set to .TRUE., an already existing attribute of the same
name will be overwritten (status is 0), whereas per default (.FALSE.) an existing attribute remains untouched and
the status is > 0.
The optional flag iflag controls the specific relevance of the attribute after restart; possible values are:

• AF NONE (default): no specific relevance,

• AF RST CMP: the actual attribute is compared to that from the restart file; differences will cause an error,

• AF RST INP: the actual attribute is read from the restart file.

Thus, iflag can for instance be used to prevent the usage of restart files, which do not match the actual model setup
(e.g., due to a different basemodel resolution).

20 P. Jöckel et al.: CHANNEL User Manual

5.1.2 The subroutine write attribute

SUBROUTINE write attribute (status, att | list)
name type intent description
mandatory arguments:
status INTEGER OUT
att∗) TYPE(t attribute) IN attribute
list∗) TYPE(t attribute list) POINTER list of attributes

∗)Note: This subroutine is twofold overloaded for single attributes (att) and attribute lists (list), respectively.
This subroutine outputs the attribute att or the attribute list list to the standard output.

5.1.3 The subroutine return attribute

SUBROUTINE return attribute (status, list, name [,i] [,c] [,r] [,iflag])
name type intent description
mandatory arguments:
status INTEGER OUT
list TYPE(t attribute list) POINTER list of attributes
name CHARACTER(LEN=*) IN name of attribute
optional arguments:
i INTEGER OUT integer value of attribute
c CHARACTER(LEN=*) OUT string value of attribute
r REAL(DP) OUT real value of attribute
iflag INTEGER OUT flag for initialisation check

With this subroutine the value of an attribute and / or its iflag are retrieved. The type is selected by parameter
assignment to the corresponding optional argument for INTEGER (i), string (CHARACTER, c) or REAL(DP) (r),
respectively.

5.1.4 The subroutine delete attribute

SUBROUTINE delete attribute (status, list, name)
name type intent description
mandatory arguments:
status INTEGER OUT
list TYPE(t attribute list) POINTER list of attributes
name CHARACTER(LEN=*) IN name of attribute

With this subroutine the attribute name is removed from the attribute list list.

5.1.5 The subroutine copy attribute list

SUBROUTINE copy attribute list (status, list1, list2)
name type intent description
mandatory arguments:
status INTEGER OUT
list1 TYPE(t attribute list) POINTER source list of attributes
list2 TYPE(t attribute list) POINTER new list of attributes

With this subroutine a copy of an attribute list is constructed.

5.1.6 The subroutine clean attribute list

SUBROUTINE clean attribute list (status ,list)
name type intent description
mandatory arguments:
status INTEGER OUT
list TYPE(t attribute list) POINTER list of attributes

With this subroutine, an attribute list is emptied.

P. Jöckel et al.: CHANNEL User Manual 21

5.2 The file messy main channel dimvar.f90

5.2.1 The subroutine add dimvar

SUBROUTINE add dimvar (status, list, name, val)
name type intent description
mandatory arguments:
status INTEGER OUT
list TYPE(t dimvar list) POINTER list of dimension variables
name CHARACTER(LEN=*) IN name of dimension variable
val REAL(DP), DIMENSION(:) IN values of dimension variable

This subroutine adds a dimension variable to a list of dimension variables. The dimension variable is identified by
its (unique) name; the discrete values along the finite axis are specified by a the array val.

5.2.2 The subroutine add dimvar att

SUBROUTINE add dimvar att (status, list, name, aname [,i] [,c] [,r]
[,loverwrite] [,iflag])

name type intent description
mandatory arguments:
status INTEGER OUT
list TYPE(t dimvar list) POINTER list of dimension variables
name CHARACTER(LEN=*) IN name of dimension variable
aname CHARACTER(LEN=*) IN name of attribute
optional arguments:
i INTEGER IN integer value of attribute
c CHARACTER(LEN=*) IN string value of attribute
r REAL(DP) IN real value of attribute
loverwrite LOGICAL IN overwrite if attribute exists?
iflag INTEGER IN check attribute at initialisation

With this subroutine, an attribute (aname) is specified for the dimension variable (name). The type of the attribute is
specified by value assignment to the corresponding optional argument for INTEGER (i), string (CHARACTER, c) or
REAL(DP) (r), respectively. The arguments loverwrite and iflag are the same as in SUBROUTINE add attribute
(Sect. 5.1.1).

5.2.3 The subroutine write dimvar

SUBROUTINE write dimvar (status , dimvar | list)
name type intent description
mandatory arguments:
status INTEGER OUT
dimvar∗) TYPE(t dimvar) IN dimension variable
list∗) TYPE(t dimvar list) POINTER list of dimension variables

∗)Note: This subroutine is twofold overloaded for writing a specific dimension variable (dimvar) or a complete list of
dimension variables (list), respectively.
This subroutine outputs information on the dimension variable dimvar or on the list of dimension variables list to
the standard output.

5.2.4 The subroutine get dimvar

SUBROUTINE get dimvar (status, list, name, dimvar)
name type intent description
mandatory arguments:
status INTEGER OUT
list TYPE(t dimvar list) POINTER list of dimension variables
name CHARACTER(LEN=*) IN name of dimension variable
dimvar TYPE(t dimvar) POINTER dimension variable

22 P. Jöckel et al.: CHANNEL User Manual

This subroutine selects a single dimension variable specified by its name from a list of dimension variables.

5.2.5 The subroutine delete dimvar

SUBROUTINE delete dimvar (status, list, name)
name type intent description
mandatory arguments:
status INTEGER OUT
list TYPE(t dimvar list) POINTER list of dimension variables
name CHARACTER(LEN=*) IN name of dimension variable

This subroutine removes a dimension variable specified by its name from a list of dimension variables.

5.2.6 The subroutine clean dimvar list

SUBROUTINE clean dimvar list (status, list)
name type intent description
mandatory arguments:
status INTEGER OUT
list TYPE(t dimvar list) POINTER list of dimension variables

This subroutine empties a list of dimension variables.

5.3 The file messy main channel dimensions.f90

5.3.1 The subroutine new dimension

SUBROUTINE new dimension (status, id, name, len [,ltime])
name type intent description
mandatory arguments:
status INTEGER OUT
id INTEGER OUT dimension identifier
name CHARACTER(LEN=*) IN name of dimension
len INTEGER IN dimension length
optional arguments:
ltime LOGICAL IN dimension is time?

With this subroutine, a new dimension is added to the central list of dimensions. The name of the dimension must be
unique, the dimension identifier (id) is internally set and returned for later reference. The length of the dimension is
specified by len, and the optional parameter ltime (default: .FALSE.) must be .TRUE. for the time dimension.

5.3.2 The subroutine add dimension variable

SUBROUTINE add dimension variable (status, dname | id, vname, val)
name type intent description
mandatory arguments:
status INTEGER OUT
dname∗) CHARACTER(LEN=*) IN name of dimension
id∗) INTEGER IN dimension identifier
vname CHARACTER(LEN=*) IN name of dimension variable
val REAL(DP), DIMENSION(:) IN values of dimension variable

∗)Note: This subroutine is twofold overloaded for usage of the dimension name or the dimension identifier, respectively.

This subroutine adds a dimension variable specified by its name (vname) to a dimension. The latter is either specified
by its name (dname) or its identifier (id). The discrete, finite axes values are specified by the array val, which must
have the dimension length.

P. Jöckel et al.: CHANNEL User Manual 23

5.3.3 The subroutine update dimension variable

SUBROUTINE update dimension variable (status, dname, vname, val)
name type intent description
mandatory arguments:
status INTEGER OUT
dname CHARACTER(LEN=*) IN name of dimension
vname CHARACTER(LEN=*) IN name of dimension variable
val REAL(DP), DIMENSION(:) IN values of dimension variable

This subroutine updates the axis values (array val) of the dimension variable vname of dimension dname. This is for
instance used to set the actual time axis value (dimension of length 1) within the time integration.

5.3.4 The subroutine add dimension variable att

SUBROUTINE add dimensionvariable att (status, dname | id, vname, aname [,i] [,c]
[,r] [,loverwrite] [,iflag])

name type intent description
mandatory arguments:
status INTEGER OUT
dname∗) CHARACTER(LEN=*) IN name of dimension
id∗) INTEGER IN dimension identifier
vname CHARACTER(LEN=*) IN name of dimension variable
aname CHARACTER(LEN=*) IN name of attribute
optional arguments:
i INTEGER IN integer value of attribute
c CHARACTER(LEN=*) IN string value of attribute
r REAL(DP) IN real value of attribute
loverwrite LOGICAL IN overwrite if attribute exists?
iflag INTEGER IN check attribute at initialisation

∗)Note: This subroutine is twofold overloaded for usage of the dimension name or the dimension identifier, respectively.

With this subroutine, the attribute aname is added to the dimension variable vname of a dimension. The latter is either
specified by its name (dname) or its identifier (id). The type of the attribute is specified by value assignment to the
corresponding optional argument for INTEGER (i), string (CHARACTER, c) or REAL(DP) (r), respectively. The
arguments loverwrite and iflag are the same as in SUBROUTINE add attribute (Sect. 5.1.1).

5.3.5 The subroutine get dimension

SUBROUTINE get dimension (status ,name | id ,dim)
name type intent description
mandatory arguments:
status INTEGER OUT
name∗) CHARACTER(LEN=*) IN name of dimension
id∗) INTEGER IN dimension identifier
dim TYPE(t dimension) POINTER dimension

∗)Note: This subroutine is twofold overloaded for usage of the dimension name or the dimension identifier, respectively.

This subroutine retrieves a dimension from the internal list. The dimension is either specified by its name, or by its
identifier (id).

24 P. Jöckel et al.: CHANNEL User Manual

5.3.6 The subroutine get dimension info

SUBROUTINE get dimension info (status ,name | dimid [,id | name] [,len])
name type intent description
mandatory arguments:
status INTEGER OUT
name∗) CHARACTER(LEN=*) IN name of dimension
dimid∗) INTEGER IN dimension identifier
optional arguments:
id∗) INTEGER OUT dimension identifier
name∗) CHARACTER(LEN=*) IN name of dimension
len INTEGER OUT dimension length

∗)Note: This subroutine is twofold overloaded for usage of the dimension name or the dimension identifier, respectively.
If the dimension name is specified, the dimension identifier can be retrieved and vice versa.

This subroutine is used to retrieve information (the identifier id (or the name name) and / or the lenght len) about
a dimension, which is specified by its name (or its identifier dimid).

5.3.7 The subroutine write dimension

SUBROUTINE write dimension (status [,dim])
name type intent description
mandatory arguments:
status INTEGER OUT
optional arguments:
dim∗) TYPE(t dimension) IN dimension

∗)Note: This subroutine is twofold overloaded. If no specific dimension (dim) is given, all dimensions are written.

This subroutine outputs information on all dimensions (no 2nd argument), or on a specific dimension dim to the
standard output.

5.3.8 The subroutine clean dimensions

SUBROUTINE clean dimensions (status)
name type intent description
mandatory arguments:
status INTEGER OUT

This subroutine empties the internal list of dimensions. It is usually called only once during the finalising phase of
the model.

P. Jöckel et al.: CHANNEL User Manual 25

5.4 The file messy main channel repr.f90

5.4.1 The subroutine new representation

SUBROUTINE new representation (status, id, name, rank, link, dctype,
dimension ids, ldimlen [,output order] [,axis]
[,nbounds])

name type intent description
mandatory arguments:
status INTEGER OUT
id INTEGER OUT representation identifier
name CHARACTER(LEN=*) IN name of representation
rank INTEGER IN rank of representation
link CHARACTER(LEN=IRANK) IN rank mapping
dctype INTEGER IN type of parallel decomposition
dimension ids INTEGER, DIMENSION(rank) IN vector of dimension identifiers
ldimlen INTEGER, DIMENSION(rank) IN local (decomposed) dimension lengths
optional arguments:
output order INTEGER, DIMENSION(rank) IN output order of ranks
axis CHARACTER(LEN=IRANK) IN geometry information
nbounds INTEGER, DIMENSION(rank) IN number of boundary points

This subroutine defines a new representation. The representation must have a unique name, its identifier (id) is
returned for later reference. The rank of the representation can be 0 ≤ rank≤IRANK, where IRANK = 4 in the current
implementation. The link specifies which of the internal IRANK ranks are used (’x’) or unused (’-’), dimension ids
is a vector (of rank rank) with the dimension identifiers of the dimensions that span the representation.

In parallel environments, the vector ldimlen specifies the ’local’ dimension lengths on the actual parallel process,
and the integer dctype is used to select the corresponding gather and scatter subroutines for the parallel re- and
decomposition of the data, respectively. The pre-defined parameter AUTO can be used as element of the ldimlen
vector to indicate that no parallel decomposition along the corresponding dimension (rank) is implemented. In that
case, the ’local’ dimension length equals the ’global’ (i.e., the original) dimension length.

The optional vector output order can be used to re-order the IRANK ranks for the output of data in this represen-
tation.

The optional string axis is used to specify the geometric meaning of the corresponding ranks, i.e. ‘X’, ’Y’, and ’Z’ for
the spatial dimensions, ’N’ for index axes, and ’-’, if the axis is not further specified. This information can be used for
generic transformation and transposition routines. The default is ’----’.

The optional vector nbounds is used to specify the number of additional ’local’ (i.e., parallel decomposed) boundary
points along each dimension at both ends, which implies that for all channel objects in this represention, the ’local’
(i.e., parallel decomposed) data array is increased by 2× nbounds(i) in the direction of dimension i. The default is
zero additional boundary points for all dimensions.

5.4.2 The subroutine set representation decomp

SUBROUTINE set representation decomp (status ,id ,start ,cnt ,mu ,ml [,lchk]
[,piotype])

name type intent description
mandatory arguments:
status INTEGER OUT
id INTEGER IN representation identifier
start INTEGER, DIMENSION(:,:) IN start vector in global index range
cnt INTEGER, DIMENSION(:,:) IN count vector in global index range
mu INTEGER, DIMENSION(:,:) IN memory lower bound
ml INTEGER, DIMENSION(:,:) IN memory upper bound
optional arguments:
lchk LOGICAL IN check memory size?
piotype INTEGER IN type of parallel input / output

26 P. Jöckel et al.: CHANNEL User Manual

With this subroutine the parallel decomposition of a representation, specified by its identifier (id), is set for parallel
input / output. Currently only parallel netCDF is implemented.

The integer arrays start, cnt, mu and ml have the dimension nseg × IRANK, where nseg is the number of consecutive
segments in the global (output) field and IRANK (=4) is the internal rank of the data.

For a given segment (1st index), start specifies the start indices in the global (output) array, cnt the number of
steps (from start) in the global (output) array, and mu and ml the upper and lower index bounds in the ’local’ (i.e.,
decomposed on the actual parallel process) memory array, respectively.

The optional parameter lchk (default: .TRUE.) is used to switch off (.FALSE.) an internal consistency check between
the local (decomposed) and global (output) array lengths. In case the arrays are internally further reshaped (e.g., for
vectorisation), this internal check must be switched off.

The optional parameter piotype is used to control the parallel input / output mode:

• PIOTYPE SGL: output of a single parallel process,

• PIOTYPE COL: collective output of all parallel processes,

• PIOTYPE IND: independent output of all parallel processes.

5.4.3 The subroutine write representation

SUBROUTINE write representation (status [,repr])
name type intent description
mandatory arguments:
status INTEGER OUT
repr∗) TYPE(t representation) IN representation

∗)Note: This subroutine is twofold overloaded for writing a specific representation (repr) or all representations,
respectively.

This subroutine outputs information on all representations (no 2nd argument), or on a specific representation repr to
the standard output.

5.4.4 The subroutine write representation dc

SUBROUTINE write representation dc (status, p pe)
name type intent description
mandatory arguments:
status INTEGER OUT
p pe INTEGER IN parallel process identifier

This subroutine outputs the parallel decomposition tables of all representations on parallel process p pe.

5.4.5 The subroutine get representation

SUBROUTINE get representation (status, name/id, repr)
name type intent description
mandatory arguments:
status INTEGER OUT
name∗) CHARACTER(LEN=*) IN name of representation
id∗) INTEGER IN representation identifier
repr TYPE(t representation) POINTER representation

∗)Note: This subroutine is twofold overloaded for usage of the representation name or the representation identifier (id),
respectively.

This subroutine sets a pointer (repr) to a specific representation, which is either specified by its name or its identifier
(id).

P. Jöckel et al.: CHANNEL User Manual 27

5.4.6 The subroutine get representation info

SUBROUTINE get representation info (status, inpname [,id] [,rank] [,link]
[,axis] [,gdimlen] [,ldimlen] [,dctype]
[,name] [,nbounds])

name type intent description
mandatory arguments:
status INTEGER OUT
inpname CHARACTER(LEN=*) IN name of representation
optional arguments:
id INTEGER INOUT representation identifier
rank INTEGER OUT rank of representation
link CHARACTER(LEN=IRANK) OUT rank mapping
axis CHARACTER(LEN=IRANK) OUT geometry information
gdimlen INTEGER, DIMENSION(IRANK) OUT global dimension lengths
ldimlen INTEGER, DIMENSION(IRANK) OUT local (decomposed) dimension lengths
dctype INTEGER OUT type of parallel decomposition
name CHARACTER(LEN=STRLEN MEDIUM) OUT name of representation
nbounds INTEGER, DIMENSION(IRANK) OUT number of boundary points

This subroutine is used to retrieve information about a representation, which is either identified by its name, or
by an empty string for its name and its identifier (id). The optional parameters correspond to those in subroutine
new representation (Sect. 5.4.1).

5.4.7 The subroutine get representation id

SUBROUTINE get representation id (status, name, reprid)
name type intent description
mandatory arguments:
status INTEGER OUT
name CHARACTER(LEN=*) IN name of representation
reprid INTEGER OUT representation identifier

This subroutine is to retrieve the representation identifier (reprid) for a given representation specified by its name.

5.4.8 The subroutine clean representations

SUBROUTINE clean representations (status)
name type intent description
mandatory arguments:
status INTEGER OUT

This subroutine empties the internal list of representations. It is usually called only once during the finalising phase
of the model.

5.4.9 The subroutine repr reorder

SUBROUTINE repr reorder (status, flag, lparallel, repr, mem, out)
name type intent description
mandatory arguments:
status INTEGER OUT
flag INTEGER IN direction flag
lparallel LOGICAL IN parallel input / output?
repr TYPE(t representation) POINTER representation
mem REAL(DP), DIMENSION(:,:,:,:) POINTER memory data array
out REAL(DP), DIMENSION(:,:,:,:) POINTER output data array

With this subroutine the shape (rank order) of a data array can be converted from memory layout (mem) to output
layout (out, flag=1) or from output / restart file layout (out) to memory layout (mem, flag=-1). repr is the pointer to

28 P. Jöckel et al.: CHANNEL User Manual

the corresponding representation. For lparallel=.TRUE. the data array dimension lengths in parallel decomposition
(i.e., local) are used (parallel input / output), for lparallel=.FALSE. the global array dimensions are used (for serial
input / output after gathering the data to a dedicated process).

5.4.10 The subroutine repr getptr

SUBROUTINE repr getptr (status, repr, in [,p0] [,p1] [,p2] [,p3]
[,p4] [,linner])

name type intent description
mandatory arguments:
status INTEGER OUT
in REAL(DP), DIMENSION(:,:,:,:) POINTER data array
repr TYPE(t representation) POINTER representation
optional arguments:
p0 REAL(DP) POINTER pointer to data array
p1 REAL(DP), DIMENSION(:), POINTER pointer to data array
p2 REAL(DP), DIMENSION(:,:), POINTER pointer to data array
p3 REAL(DP), DIMENSION(:,:,:), POINTER pointer to data array
p4 REAL(DP), DIMENSION(:,:,:,:) POINTER pointer to data array
linner LOGICAL IN select inner part only?

This subroutine sets pointers of rank 0 (p0) to IRANK (p4) to the data memory (in), according to the parameter
link (see Sect. 5.4.1) of the corresponding representation repr.

If linner is .TRUE. (default is .FALSE.) and the representation is defined with additional boundaries (see Sect. 3.4),
the resulting p0 . . . p4 point to the inner part of the internal data memory, i.e., without the additional boundaries.

5.5 The file messy main channel.f90

The subroutines and functions in this file constitute the main interface subroutines for the application of CHANNEL
from within a model. They are divided into two groups: the first group (to be called from the basemodel interface
layer (BMIL)) to provide the overall framework, and the second group (to be called from the submodel interface layer
(SMIL)) of MESSy submodels to handle individual channels and objects.

5.5.1 BMIL subroutines

5.5.1.1 The subroutine main channel read ctrl

SUBROUTINE main channel read nml ctrl (status ,iou)
name type intent description
mandatory arguments:
status INTEGER OUT
iou INTEGER IN input / output unit

This subroutine is called once during the initialisation phase of the model to read the CTRL namelist (see Sect. 2.1).

5.5.1.2 The subroutine fixate channels

SUBROUTINE fixate channels (status)
name type intent description
mandatory arguments:
status INTEGER OUT

This subroutine is called once at the end of the initialisation phase of the model. All settings for channels and channel
objects are fixated and after the call to this subroutine no more channels or channel objects can be created. With the
call to this subroutine, the channel based memory layout of the model is complete.

P. Jöckel et al.: CHANNEL User Manual 29

5.5.1.3 The subroutine trigger channel output

SUBROUTINE trigger channel output (status, lnow, ltnf, lforce new)
name type intent description
mandatory arguments:
status INTEGER OUT
lnow LOGICAL,DIMENSION(:) IN trigger channel specific output now
ltnf LOGICAL,DIMENSION(:) IN trigger channel specific new file now
lforce new LOGICAL IN trigger new files for all channels now

This subroutine is called once within the time loop of the model in order to trigger the output of the channel objects
in each channel (lnow), and / or to force the creation of new output files (ltnf) instead of appending the output to
existing files (for time series). The array lengths of lnow and ltnf equal the number of channels, i.e. output and
file creation are controlled for each channel individually. With lforce new = .TRUE. new files are created for all
channels.

5.5.1.4 The subroutine update channels

SUBROUTINE update channels (status ,flag ,dtime)
name type intent description
mandatory arguments:
status INTEGER OUT
flag INTEGER IN flag for different entry points
dtime REAL(DP) IN time step length

This subroutine is called once within the time loop of the model to update the internal counters (e.g., the output time
steps per output file) and to update the internal secondary (statistical) data fields (see Sect. 2.1). The time step length
dtime is internally used for calculating the statistics (e.g., the average between two output time steps, see Sect. 2.1).

5.5.1.5 The subroutine clean channels

SUBROUTINE clean channels (status)
name type intent description
mandatory arguments:
status INTEGER OUT

This subroutines empties the complete list of channels and releases all memory consumed by channels and channel
objects, except for the externally pre-allocated memory used with the mem option (see Sect. 5.5.3.1). It is usually called
once during the finalising phase of the model.

5.5.2 SMIL subroutines for channels

5.5.2.1 The subroutine new channel

SUBROUTINE new channel (status, cname [,reprid] [,lrestreq])
name type intent description
mandatory arguments:
status INTEGER OUT
cname CHARACTER(LEN=*) IN name of channel
optional arguments:
reprid INTEGER IN identifier of default representation
lrestreq LOGICAL IN default switch for restart file dump

This subroutine defines a new channel with the unique name cname. With the optional parameter reprid the default
representation, specified by its identifier, for all channel objects of this channel can be pre-set. This can still be
overwritten during the creation of the channel object, however (see Sect. 5.5.3.1). Likewise, with the optional parameter
lrestreq=.TRUE. (default is .FALSE.) all channel objects are written to the channel restart file, unless overwritten
by creation of the channel object (see Sect. 5.5.3.1).

30 P. Jöckel et al.: CHANNEL User Manual

5.5.2.2 The subroutine write channel

SUBROUTINE write channel (status [,channel | cname])
name type intent description
mandatory arguments:
status INTEGER OUT
optional arguments:
channel∗) TYPE(t channel) POINTER channel
cname∗) CHARACTER(LEN=*) IN name of channel

∗)Note: This subroutine is threefold overloaded to write one specific channel, either specified directly (channel) or by
the channel name (cname), or to write all channels (no second argument), respectively.

This subroutine outputs summary information about one channel, either specified directly or by its name (cname), or
about all channels (no 2nd argument).

5.5.2.3 The subroutine get channel info

SUBROUTINE get channel info (status, cname [,ldims] [,lreprs] [,onames]
[,pick])

name type intent description
mandatory arguments:
status INTEGER OUT
cname CHARACTER(LEN=*) IN name of channel
optional arguments:
ldims LOGICAL, DIMENSION(:) POINTER dimension flags
lreprs LOGICAL, DIMENSION(:) POINTER representation flags
onames CHARACTER(LEN=STRLEN OBJECT) POINTER object names
pick CHARACTER(LEN=*) IN selector (restart, output, all)

With this subroutine, specific information about a channel (specified by its name cname) can be optionally retrieved:
The length of ldims is the number of defined dimensions and its elements (index = dimension identifier) indicate, if the
corresponding dimension is used (.TRUE.) by at least one channel object in the channel or not (.FALSE.). Likewise, the
length of lreprs is the number of defined representations and its elements (index = representation identifier) indicate,
if at least one channel object in the channel is of the corresponding representation (.TRUE.), or not (.FALSE.). The
list onames contains the names of the channel objects in the channel.

With pick a subset of channel objects in the channel can be selected for ldims, lreprs and onames:

• ’all’: all channel objects are selected,

• ’output’: only channel objects which are output are selected,

• ’restart’: only channel objects which are written to the restart file are selected.

5.5.2.4 The subroutine get channel name

SUBROUTINE get channel name (status, id, cname)
name type intent description
mandatory arguments:
status INTEGER OUT
id INTEGER IN channel identifier
cname CHARACTER(LEN=STRLEN CHANNEL) OUT name of channel

This subroutine is to retrieve the name (cname) of a channel for a given channel identifier (id).

P. Jöckel et al.: CHANNEL User Manual 31

5.5.2.5 The subroutine set channel output

SUBROUTINE set channel output (status, cname, lout)
name type intent description
mandatory arguments:
status INTEGER OUT
cname CHARACTER(LEN=*) IN name of channel
lout LOGICAL IN trigger / suppress output?

With this subroutine called within the time loop of the model, the output of a specific channel, specified by its name
(cname), can be forced (lout=.TRUE.) or suppressed (lout=.FALSE.), independent of the corresponding namelist
entries (see Sects. 2.1 and 2.2). This is useful for specific diagnostic submodels.

5.5.2.6 The subroutine set channel newfile

subroutine set channel newfile (status, cname, lnew)
name type intent description
mandatory arguments:
status INTEGER OUT
cname CHARACTER(LEN=*) IN name of channel
lnew LOGICAL IN trigger new file?

With this subroutine called within the time loop of the model, the generation of a new output file for the channel with
name cname can be forced (lnew=.TRUE.), independent of the corresponding namelist entries (see Sects. 2.1 and 2.2).
This is useful for specific diagnostic submodels.

5.5.3 SMIL subroutines for channel objects

5.5.3.1 The subroutine new channel object

SUBROUTINE new channel object (status ,cname ,oname [,p0] [,p1] [,p2] [,p3]
[,p4] [,mem] [,reprid] [,lrestreq])

name type intent description
mandatory arguments:
status INTEGER OUT
cname CHARACTER(LEN=*) IN name of channel
oname CHARACTER(LEN=*) IN name of object
optional arguments:
p0 REAL(DP) POINTER pointer to data array
p1 REAL(DP), DIMENSION(:) POINTER pointer to data array
p2 REAL(DP), DIMENSION(:,:) POINTER pointer to data array
p3 REAL(DP), DIMENSION(:,:,:) POINTER pointer to data array
p4 REAL(DP), DIMENSION(:,:,:,:) POINTER pointer to data array
mem REAL(DP), DIMENSION(:,:,:,:) POINTER external data array
reprid INTEGER IN representation identifier
lrestreq LOGICAL IN dump to restart file?

This subroutine defines a new channel object in an existing channel. The name of the channel is cname and the name
of the channel object is oname and must be unique within the channel. The optional pointers p0, p1, p2, p3 and p4 of
rank 0 to IRANK=4, respectively, point to the internal data memory, according to the representation (see parameter
link, Sect. 5.4.1) of the channel object. The representation of the channel object is defined by either the default (see
Sect. 5.5.2.1) or by the parameter reprid, in both cases by the representation identifier.

The parameter lrestreq, of which the default for all objects in one channel can be pre-set according to Sect. 5.5.2.1,
controls if the corresponding channel object needs to be written to the restart file (.TRUE.) or not (.FALSE.).

With the optional pointer mem (of rank IRANK=4), specific, pre-allocated memory for the channel object can be
specified. In this case, the internal automatic memory management is bypassed and the user must take care of the
correct allocation and deallocation of the memory!

32 P. Jöckel et al.: CHANNEL User Manual

5.5.3.2 The subroutine get channel object

SUBROUTINE get channel object (status, cname, oname [,p0] [,p1] [,p2] [,p3]
[,p4], [,linner])

name type intent description
mandatory arguments:
status INTEGER OUT
cname CHARACTER(LEN=*) IN name of channel
oname CHARACTER(LEN=*) IN name of object
optional arguments:
p0 REAL(DP) POINTER pointer to data array
p1 REAL(DP), DIMENSION(:) POINTER pointer to data array
p2 REAL(DP), DIMENSION(:,:) POINTER pointer to data array
p3 REAL(DP), DIMENSION(:,:,:) POINTER pointer to data array
p4 REAL(DP), DIMENSION(:,:,:,:) POINTER pointer to data array
linner LOGICAL IN select inner part only?

This subroutine is used to set pointers of rank 0 to IRANK=4 (p0 . . . p4) to the internal data memory of the channel
object oname in channel cname, according to the representation of the channel object (see parameter link, Sect. 5.4.1).

If linner is .TRUE. (default is .FALSE.) and the representation is defined with additional boundaries (see Sect. 3.4),
the resulting p0 . . . p4 point to the inner part of the internal data memory, i.e., without the additional boundaries.

5.5.3.3 The subroutine get channel object info

SUBROUTINE get channel object info (status, cname, oname [,lrestart read]
[,reprid] [,axis] [,nbounds])

name type intent description
mandatory arguments:
status INTEGER OUT
cname CHARACTER(LEN=*) IN name of channel
oname CHARACTER(LEN=*) IN name of object
optional arguments:
lrestart read LOGICAL OUT flag to read from restart file
reprid INTEGER OUT representation identifier
axis CHARACTER(LEN=IRANK) OUT geometric information
nbounds INTEGER, DIMENSION(IRANK) OUT number of boundary points

This subroutine is used to retrieve information about a specific channel object (oname) in channel cname, namely if it
was read from the corresponding restart file (then lrestart read=.TRUE.) and its representation identifier. Moreover,
additional geometric information about the underlying representation can be retrieved (see Sect. 3.4): the axes (with
axis) and the number of additional boundary points in each dimension (nbounds).

5.5.3.4 The subroutine new channel object reference

SUBROUTINE new channel object reference (status, cname1, oname1, cname2, oname2
[,lcopyatt])

name type intent description
mandatory arguments:
status INTEGER OUT
cname1 CHARACTER(LEN=*) IN name of existing channel
oname1 CHARACTER(LEN=*) IN name of existing object
cname2 CHARACTER(LEN=*) IN name of channel to add reference to
oname2 CHARACTER(LEN=*) IN name of object in referencing channel
optional arguments:
lcopyatt LOGICAL IN copy all object attributes?

P. Jöckel et al.: CHANNEL User Manual 33

This subroutine creates a reference (with name oname2) in a second channel (cname2) to a channel object (oname1)
in channel cname1. The primary data memory is shared between the original object and its reference, the secondary
data memory (for the statistical analyses) is separately allocated (see Sect. 2.1), depending on the requests specified
in the CTRL-namelist (see Sect. 2.1).

5.5.3.5 The subroutine set channel object restreq

SUBROUTINE set channel object restreq (status, cname, oname)
name type intent description
mandatory arguments:
status INTEGER OUT
cname CHARACTER(LEN=*) IN name of channel
oname CHARACTER(LEN=*) IN name of object

This subroutine is used to set the restart flag of a specific channel object (oname) in channel cname, in order to force
the output of the object into the corresponding restart file.

5.5.3.6 The subroutine get channel object dimvar

SUBROUTINE get channel object dimvar (status, cname, oname, dva [, units])
name type intent description
mandatory arguments:
status INTEGER OUT
cname CHARACTER(LEN=*) IN name of channel
oname CHARACTER(LEN=*) IN name of object
dva TYPE (PTR 1D ARRAY), DIMENSION(:) POINTER pointer to dimension

DIMENSION(:) variable data array
optional arguments:
units CHARACTER(LEN=STRLEN ULONG), POINTER units of

DIMENSION(:) dimension variables

This subroutine is used to access the dimension variables of the channel object (oname) in channel cname. The values
of the dimension variables are accessed through the pointer dva, the corresponding “units” attributes are optionally
retrieved with the string array pointer units.

The parameter dva is of type

TYPE PTR_1D_ARRAY
REAL(DP), DIMENSION(:), POINTER :: PTR

END TYPE PTR_1D_ARRAY

Example: The values of the 2nd dimension variable of the channel object are accessed by dva(2)%ptr(:), the corre-
sponding unit is units(2). Both, dva and units are allocated according to the number of dimensions of the channel
objects representation. In case a dimension has more than one corresponding dimension variable, the first is used. If
no “units” attribute is defined for dimension variable of dimension n, units(n) contains an empty string.

5.5.4 SMIL subroutines for attributes

5.5.4.1 The subroutine new attribute

34 P. Jöckel et al.: CHANNEL User Manual

SUBROUTINE new attribute (status, (list, name) | (ganame) | (cname,
caname) | (cname, oname, oaname) [,i] [,c]
[,r] [,loverwrite] [,iflag])

name type intent description
mandatory arguments:
status INTEGER OUT
list∗) TYPE(t attribute list) POINTER list of attributes
name∗) CHARACTER(LEN=*) IN name of new attribute
ganame∗) CHARACTER(LEN=*) IN name of new global attribute
cname∗) CHARACTER(LEN=*) IN name of channel
caname∗) CHARACTER(LEN=*) IN name of new channel attribute
cname∗) CHARACTER(LEN=*) IN name of channel
oname∗) CHARACTER(LEN=*) IN name of object
oaname∗) CHARACTER(LEN=*) IN name of new channel object attribute
optional arguments:
i INTEGER IN integer value of attribute
c CHARACTER(LEN=*) IN string value of attribute
r REAL(DP) IN real value of attribute
loverwrite LOGICAL IN overwrite if attribute exists?
iflag INTEGER IN check attribute at initialisation

∗)Note: This subroutine is fourfold overloaded to add an attribute (name) to an attribute list (list), to add a global
attribute (ganame), to add a channel attribute (cname is the channel name and caname the channel attribute name),
or to add a channel object attribute (cname is the channel name, oname the channel object name, oaname the channel
object attribute name), respectively.

This subroutine provides a comfortable interface to define attributes for various entities, namely arbitrary attribute
lists (list and name), centrally stored global attributes (ganame), channel attributes (cname and caname) and channel
object attributes (cname, oname and oaname).

The type of the attribute is in all cases specified by value assignment to the corresponding optional argument for
INTEGER (i), string (CHARACTER, c) or REAL(DP) (r), respectively. The arguments loverwrite and iflag are
the same as in SUBROUTINE add attribute (Sect. 5.1.1).

5.5.4.2 The subroutine get attribute

SUBROUTINE get attribute (status, (list, name) | (ganame) | (cname,
caname) | (cname, oname, oaname) [,i] [,c]
[,r] [,iflag])

name type intent description
mandatory arguments:
status INTEGER OUT
list∗) TYPE(t attribute list) POINTER list of attributes
name∗) CHARACTER(LEN=*) IN name of attribute
ganame∗) CHARACTER(LEN=*) IN name of global attribute
cname∗) CHARACTER(LEN=*) IN name of channel
caname∗) CHARACTER(LEN=*) IN name of channel attribute
cname∗) CHARACTER(LEN=*) IN name of channel
oname∗) CHARACTER(LEN=*) IN name of object
oaname∗) CHARACTER(LEN=*) IN name of object attribute
optional arguments:
i INTEGER OUT integer value of attribute
c CHARACTER(LEN=*) OUT string value of attribute
r REAL(DP) OUT real value of attribute
iflag INTEGER OUT check attribute at initialisation

∗)Note: This subroutine is fourfold overloaded to retrieve an attribute (name) from an attribute list (list), to retrieve a
global attribute (ganame), to retrieve a channel attribute (cname is the channel name and caname the channel attribute

P. Jöckel et al.: CHANNEL User Manual 35

name), or to retrieve a channel object attribute (cname is the channel name, oname the channel object name, oaname
the channel object attribute name), respectively.
This subroutine provides a comfortable interface to retrieve attributes of various entities, namely arbitrary attribute
lists (list and name), centrally stored global attributes (ganame), channel attributes (cname and caname) and channel
object attributes (cname, oname and oaname).
The type of the attribute is in all cases specified by parameter assignment to the corresponding optional argument
for INTEGER (i), string (CHARACTER, c) or REAL(DP) (r), respectively. The argument iflag is the same as in
SUBROUTINE add attribute (Sect. 5.1.1).

5.5.4.3 The subroutine write attribute

SUBROUTINE write attribute (status [,att | list])
name type intent description
mandatory arguments:
status INTEGER OUT
att∗) TYPE(t attribute) IN attribute
list∗) TYPE(t attribute list) POINTER list of attributes

∗)Note: This subroutine is threefold overloaded to write the global attributes (no second parameter), or to write either
one specific attribute (att) or a complete list of attributes (list), respectively.
This subroutine writes all global attributes (no 2nd argument), a specific attribute (att) or a list of attributes (list)
to the standard output.

6 Channels and tracer

6.1 The file messy main channel tracer.f90

The MESSy infrastructure submodel TRACER for the specific meta-data and memory management for constituents
(such as water in different phases, chemical compounds, aerosol etc.) in different media and domains has been published
by Jöckel et al. (2008)4.
The subroutines described in this section comprise the interface between the TRACER memory management and the
CHANNEL memory management, such that tracers (and their various instances, see reference above) are also channel
objects and the complete namelist controlled output (see Sects. 2.1 and 2.2) can be applied.

6.1.1 The subroutine create tracer channels

SUBROUTINE create tracer channels (status, trsetname, channelname, reprid)
name type intent description
mandatory arguments:
status INTEGER OUT
trsetname CHARACTER(LEN=*) IN name of tracer set
channelname CHARACTER(LEN=*) IN name of channel
reprid INTEGER IN representation identifier

This subroutine creates a new channel (with name channelname) for the tracers in tracer set trsetname. In addition,
depending on the construction of the tracer set, additional channels for all higher tracer set instances are created;
those are named by the channelname suffixed with “ te” and “ m1” for the tendencies and t−∆t values, respectively,
or alternatively by “ nnn”, where nnn is the number (with leading zeros) of the tracer instance.
All instances of all tracers in one tracer set share the same geometric layout, and therefore the same representation,
which needs to be specified by its representation identifier (reprid).
Each tracer in a tracer set becomes associated with a channel object (with the tracer name) in all channels corresponding
to the instances of the tracer set. The tracer memory and the channel object memory are identical through pointer
association, no additional memory is required. The meta information of the tracers are internally converted to
corresponding channel object attributes.

4http://www.atmos-chem-phys.net/8/1677

36 P. Jöckel et al.: CHANNEL User Manual

6.1.2 The subroutine set channel or tracer

SUBROUTINE set channel or tracer (status ,trstr ,chstr ,cname ,oname ,pxt
,pxtte)

name type intent description
mandatory arguments:
status INTEGER OUT
trstr CHARACTER(LEN=*) IN name of tracer set
chstr CHARACTER(LEN=*) IN name of tracer channel
cname CHARACTER(LEN=*) IN name of channel
oname CHARACTER(LEN=*) IN name of object
pxt REAL(DP), DIMENSION(:,:,:) POINTER pointer to (tracer) memory
pxtte REAL(DP), DIMENSION(:,:,:) POINTER pointer to tracer tendency memory

This subroutine provides a comfortable interface to set pointers to the tracer memory (which is the same as the channel
object memory), if the object (named oname) is a tracer in the tracer set trstr, or to the channel object memory, if
the object is not a tracer, but an object in channel cname. In the first case, pxt points to the tracer memory and in
addition, if the tracer set is constructed accordingly, pxtte points to the tracer tendency memory. In the second case,
pxt points to the primary channel object memory, and pxtte is not associated.

7 Input/Output

7.1 The file messy main channel io.f90

This module comprises the file format independent entry points for the output of channels and channel objects into
output and restart files, and for the input of channels and channel objects from restart files. The subroutines of this
module are called from within the basemodel interface layer (BMIL) and control the input / output of all channels and
channel objects of all plugged-in submodels. This means, the subroutines are collective for all channels and channel
objects in the model; nevertheless the output and restart file formats can be selected in the CTRL namelist for each
channel individually (see Sect. 2.1).
The file format specific subroutines are implemented in the modules messy main channel netcdf.f90 and
messy main channel pnetcdf.f90 for serial and parallel netCDF input / output (explained in Sects. 7.2 and 7.3),
respectively.

7.1.1 The subroutine initialize parallel io

SUBROUTINE initialize parallel io (status, p pe, p io, p all comm)
name type intent description
mandatory arguments:
status INTEGER OUT
p pe INTEGER IN parallel process identifier
p io INTEGER IN input / output process identifier
p all comm INTEGER IN communicator

This subroutine is called once in the initialisation phase of the model, if parallel input / output is applied. The
required information is stored internally, such as the current process identifier (p pe), the process identifier for serial
input / output (p io), and the message passing interface (MPI) communicator (p all comm).

7.1.2 The subroutine channel init restart

SUBROUTINE channel init restart (status, lp, lp io, fname base, rstatt)
name type intent description
mandatory arguments:
status INTEGER OUT
lp LOGICAL OUT parallel input / output?
lp io LOGICAL IN input / output process?
fname base CHARACTER(LEN=*) IN basename of output file
rstatt TYPE(t attribute list) POINTER list of restart attributes

P. Jöckel et al.: CHANNEL User Manual 37

This subroutine is called once during the initialisation phase of the model, if the model starts in restart mode. It
internally sets the required information (e.g., timing information) read from one specific restart file, which name is
fname base suffixed by the file format extension, e.g., “.nc” for netCDF files. This is achieved by reading the attributes
in the attribute list rstatt from the restart file. The parameter lp returns .TRUE., if parallel input / output is used;
the switch lp io is used to limit diagnostic standard output to one process in a parallel environment.

7.1.3 The subroutine channel init io

SUBROUTINE channel init io (status, lp io, iomode, fname, amode [,att])
name type intent description
mandatory arguments:
status INTEGER OUT
lp io LOGICAL IN input / output process?
iomode INTEGER IN read / write output or restart file?
fname CHARACTER(LEN=*) IN name of output file
amode INTEGER IN access mode (read or write)
optional arguments:
att TYPE(t attribute list) POINTER list of attributes

This subroutine is called once during the initialisation phase, if the model starts in restart mode, to initialise the input
from the restart files, and / or once during the time integration phase of the model to initialise the output of data.

The mode is specified by the parameter iomode, which is IOMODE OUT for output, or IOMODE RST for restart files,
respectively. The name of the output / restart file is composed by fname, followed (internally added) by an underscore,
the name of the channel and the file format specific extension. The access mode amode is either AMODE WRITE for output,
or AMODE READ for input (IOMODE RST only!).

An optional list of attributes (att) can be specified for input / output.

The switch lp io is used to limit diagnostic standard output to one process in a parallel environment.

7.1.4 The subroutine channel write header

SUBROUTINE channel write header (status ,lp io ,iomode ,dimid time [,att])
name type intent description
mandatory arguments:
status INTEGER OUT
lp io LOGICAL IN input / output process?
iomode INTEGER IN read / write output or restart file?
dimid time INTEGER IN time dimension identifier
optional arguments:
att TYPE(t attribute list) POINTER list of attributes

This subroutine is called during the time integration phase of the model and outputs the header information for all
channels to the corresponding output (iomode=IOMODE OUT) or restart files (iomode=IOMODE RST), respectively. For
the output of time series, the dimension identifier of the time dimension dimid time is required. Additional attributes,
e.g., a special restart attribute list, can be added to the header by the optional parameter att.

The switch lp io is used to limit diagnostic standard output to one process in a parallel environment.

7.1.5 The subroutine channel write time

SUBROUTINE channel write time (status, lp io, iomode, dimid time)
name type intent description
mandatory arguments:
status INTEGER OUT
lp io LOGICAL IN input / output process?
iomode INTEGER IN read / write output or restart file?
dimid time INTEGER IN time dimension identifier

38 P. Jöckel et al.: CHANNEL User Manual

This subroutine is called during the time integration phase of the model and outputs the time information for all chan-
nels to the corresponding output (iomode=IOMODE OUT) or restart files (iomode=IOMODE RST), respectively. dimid time
is the time dimension identifier.

The switch lp io is used to limit diagnostic standard output to one process in a parallel environment.

7.1.6 The subroutine channel write data

SUBROUTINE channel write data (status, lp, lp io, iomode, lexit, ptr,
reprid)

name type intent description
mandatory arguments:
status INTEGER OUT
lp LOGICAL OUT parallel input / output?
lp io LOGICAL IN input / output process?
iomode INTEGER IN read / write output or restart file?
lexit LOGICAL OUT loop finished?
ptr REAL(DP), DIMENSION(:,:,:,:) POINTER data array for output
reprid INTEGER OUT representation identifier

This subroutine writes the channel object data arrays to the output (iomode=IOMODE OUT) or restart files
(iomode=IOMODE RST), respectively.

It is called twice within an endless do-loop at the end of each model time step. This loop is complemented by an endless
do-loop within the subroutine, which steps through all channel object data arrays (primary and secondary statistical).
This nested loop construction is used to enable a separation of the parallel decomposition in the basemodel interface
layer (BMIL).

The first call within the loop returns a pointer to the current channel object data array in parallel decomposition
(memory layout, ptr) and the corresponding representation identifier (reprid) of the channel object. For serial
output (lp=.FALSE.), ptr must then be recomposed (gathered) and – depending on the representation – reshaped
into output layout. Alternatively, for parallel output (lp=.TRUE.), ptr must be – depending on the representation –
only reshaped into output layout.

In the second call, ptr then represents the channel object data array in output layout, either decomposed (local) for
parallel, or recomposed (global) for serial output.

If the last channel object data array has been passed in the inner loop, lexit is .TRUE. and the outer loop is exited.

The switch lp io is used to limit diagnostic standard output to one process in a parallel environment.

7.1.7 The subroutine channel finish io

SUBROUTINE channel finish io (status, lp io, iomode, lclose)
name type intent description
mandatory arguments:
status INTEGER OUT
lp io LOGICAL IN parallel input / output?
iomode INTEGER IN read / write output or restart file?
lclose LOGICAL IN close file after read / write?

This subroutine is called once after writing the data to finish the output to the output files (iomode=IOMODE OUT)
or restart files (iomode=IOMODE RST), respectively. The files are either closed (lclose=.TRUE.), or remain open
(lclose=.FALSE.), and the the corresponding output buffers are flushed (either system dependent, or forced by the
namelist parameter L FLUSH IOBUFFER, see Sect. 2.1).

The switch lp io is used to limit diagnostic standard output to one process in a parallel environment.

P. Jöckel et al.: CHANNEL User Manual 39

7.1.8 The subroutine channel read data

SUBROUTINE channel read data (status, lp io, iomode, lexit, ptr, reprid,
lp)

name type intent description
mandatory arguments:
status INTEGER OUT
lp io LOGICAL IN input / output process?
iomode INTEGER IN read output or restart file?
lexit LOGICAL OUT loop finished?
ptr REAL(DP), DIMENSION(:,:,:,:) POINTER data array for input
reprid INTEGER OUT representation identifier
lp INTEGER OUT parallel input/ output?

This subroutine reads the channel object array data from the restart files (iomode=IOMODE RST). It is called twice within
an endless do-loop during the initialisation phase of the model, if it starts in restart mode. The loop is complemented
by an endless do-loop within the subroutine, which steps through all channel object data arrays (primary and secondary
statistical). This nested loop construction is used to enable a separation of the parallel decomposition in the basemodel
interface layer (BMIL).
The first call within the loop returns a pointer to the current channel object data array in output layout (ptr), either
decomposed for parallel (lp=.TRUE.), or recomposed for serial (lp=.FALSE.) input. The corresponding representation
identifier of the channel object is stored in reprid. In the case of parallel input, ptr must then - depending on the
representation - be reshaped to memory layout. Alternatively, for serial input, ptr must be decomposed (scattered)
and - depending on the representation - reshaped to memory layout.
In the second call, ptr is represented in memory layout, either decomposed for parallel, or recomposed for serial input.
The data is then copied to the corresponding channel object data array.
If the last channel object data array has been passed in the inner loop, lexit is .TRUE. and the outer loop is exited.
The switch lp io is used to limit diagnostic standard output to one process in a parallel environment.

7.2 The file messy main channel netcdf.f90

This module contains the implementation for input / output from / into output and restart files in netCDF5 format.
All subroutines are called from within the corresponding subroutines in the module messy main channel io.f90 (see
Sect. 7.1).

7.2.1 The subroutine ch netcdf init rst

SUBROUTINE ch netcdf init rst (status, fname, att)
name type intent description
mandatory arguments:
status INTEGER OUT
fname CHARACTER(LEN=*) IN name of file
att TYPE(t attribute list) POINTER list of attributes

This subroutine reads the restart attributes in the attribute list att from the file fname.

7.2.2 The subroutine ch netcdf init io

SUBROUTINE ch netcdf init io (status, iomode, channel, amode [,att])
name type intent description
mandatory arguments:
status INTEGER OUT
iomode INTEGER IN read / write output or restart file?
channel TYPE(t channel) POINTER channel
amode INTEGER IN access mode (read or write)
optional arguments:
att TYPE(t attribute list) POINTER attribute list

5http://www.unidata.ucar.edu/software/netcdf

40 P. Jöckel et al.: CHANNEL User Manual

This subroutine initialises the output (amode=AMODE WRITE) of one channel into an output (iomode=IOMODE OUT) or
restart file (iomode=IOMODE RST), respectively. Alternatively, the input (amode=AMODE READ) of the channel from the
corresponding restart file (iomode=IOMODE RST) is initialised.

An optional list of attributes (att) can be specified for input / output.

7.2.3 The subroutine ch netcdf write header

SUBROUTINE ch netcdf write header (status ,iomode ,channel ,dim time [,att])
name type intent description
mandatory arguments:
status INTEGER OUT
iomode INTEGER IN write output or restart file?
channel TYPE(t channel) POINTER channel
dim time TYPE(t dimension) POINTER time dimension
optional arguments:
att TYPE(t attribute list) POINTER list of attributes

This subroutine writes the header information of one channel to the corresponding output (iomode=IOMODE OUT) or
restart file (iomode=IOMODE RST), respectively. For the time series output, the time dimension dim time is required.
Additional attributes (e.g., the restart attributes) can optionally be specified by the attribute list att.

7.2.4 The subroutine ch netcdf write time

SUBROUTINE ch netcdf write time (status, channel, dim time)
name type intent description
mandatory arguments:
status INTEGER OUT
channel TYPE(t channel) POINTER channel
dim time TYPE(t dimension) POINTER time dimension

This subroutine writes the time information, specified by the time dimension dim time to the output file of the
channel.

7.2.5 The subroutine ch netcdf write data

SUBROUTINE ch netcdf write data (status, iomode, channel, object, ptr, jsnd,
i2nd)

name type intent description
mandatory arguments:
status INTEGER OUT
iomode INTEGER IN write output or restart file?
channel TYPE(t channel) POINTER channel
object TYPE(t channel object) POINTER object
ptr REAL(DP), DIMENSION(:,:,:,:) POINTER data array
jsnd INTEGER IN output data type
i2nd INTEGER IN index of secondary array

This subroutine writes one channel object data array of the object in channel to the corresponding output
(iomode=IOMODE OUT) or restart file (iomode=IOMODE RST), respectively. ptr is the pointer to the actual data array in
memory, jsnd indicates the type of primary or secondary (derived statistical) data (i.e., SND INS, SND AVE, SND STP,
SND MIN, SND MAX, SND CNT, SND CAV), and i2nd is the position of the actual secondary data in the internal secondary
data array.

P. Jöckel et al.: CHANNEL User Manual 41

7.2.6 The subroutine ch netcdf finish io

SUBROUTINE ch netcdf finish io (status, iomode, channel, lclose)
name type intent description
mandatory arguments:
status INTEGER OUT
iomode INTEGER IN write output or restart file?
channel TYPE(t channel) POINTER channel
lclose LOGICAL IN close file after read / write?

This subroutine closes (lclose=.TRUE.) or flushes (lclose=.FALSE.) the output (iomode=IOMODE OUT) or restart file
(iomode=IOMODE RST) of channel, respectively. The flushing is either system dependent (output buffer size), or can
be forced by the namelist parameter L FLUSH IOBUFFER (see Sect. 2.1).

7.2.7 The subroutine ch netcdf read data

SUBROUTINE ch netcdf read data (status, iomode, channel, object, ptr, jsnd,
i2nd)

name type intent description
mandatory arguments:
status INTEGER OUT
iomode INTEGER IN read output or restart file?
channel TYPE(t channel) POINTER channel
object TYPE(t channel object) POINTER object
ptr REAL(DP), DIMENSION(:,:,:,:) POINTER data array
jsnd INTEGER IN output data type
i2nd INTEGER IN index of secondary array

This subroutine reads one channel object data array of the object in channel from the corresponding restart file
(iomode=IOMODE RST). ptr is the pointer to the data in output layout. jsnd indicates the type of primary or secondary
(derived statistical) data (i.e., SND INS, SND AVE, SND STP, SND MIN, SND MAX, SND CNT, SND CAV), and i2nd is the
position of the actual secondary data in the internal secondary data array.

7.3 The file messy main channel pnetcdf.f90

This module contains the implementation for input / output from / into output and restart files in netCDF format
by using the parallel netCDF6 library. All subroutines are called from within the corresponding subroutines in the
module messy main channel io.f90 (see Sect. 7.1).

7.3.1 The subroutine ch pnetcdf init pio

SUBROUTINE ch pnetcdf init pio (status ,ex p pe ,ex p io ,ex p all comm)
name type intent description
mandatory arguments:
status INTEGER OUT
ex p pe INTEGER IN parallel process identifier
ex p io INTEGER IN input / output process identifier
ex p all comm INTEGER IN communicator

With this subroutine the settings required for parallel input / output are stored internally. These are the current process
identifier (ex p pe), the process identifier for serial input / output (ex p io), and the message passing interface (MPI)
communicator (ex p all comm).

6http://www.mcs.anl.gov/parallel-netcdf

42 P. Jöckel et al.: CHANNEL User Manual

7.3.2 The subroutine ch pnetcdf init rst

SUBROUTINE ch netcdf init rst (status, fname, att)
name type intent description
mandatory arguments:
status INTEGER OUT
fname CHARACTER(LEN=*) IN name of file
att TYPE(t attribute list) POINTER list of attributes

This subroutine reads the restart attributes in the attribute list att from the file fname.

7.3.3 The subroutine ch pnetcdf init io

SUBROUTINE ch pnetcdf init io (status, iomode, channel, amode [,att])
name type intent description
mandatory arguments:
status INTEGER OUT
iomode INTEGER IN read / write output or restart file?
channel TYPE(t channel) POINTER channel
amode INTEGER IN access mode (read or write)
optional arguments:
att TYPE(t attribute list) POINTER list of attributes

This subroutine initialises the output (amode=AMODE WRITE) of one channel into an output (iomode=IOMODE OUT) or
restart file (iomode=IOMODE RST), respectively. Alternatively, the input (amode=AMODE READ) of the channel from the
corresponding restart file (iomode=IOMODE RST) is initialised.

An optional list of attributes (att) can be specified for input / output.

7.3.4 The subroutine ch pnetcdf write header

SUBROUTINE ch pnetcdf write header (status, iomode, channel, dim time [,att])
name type intent description
mandatory arguments:
status INTEGER OUT
iomode INTEGER IN write output or restart file?
channel TYPE(t channel) POINTER channel
dim time TYPE(t dimension) POINTER time dimension
optional arguments:
att TYPE(t attribute list) POINTER list of attributes

This subroutine writes the header information of one channel to the corresponding output (iomode=IOMODE OUT) or
restart file (iomode=IOMODE RST), respectively. For the time series output, the time dimension dim time is required.
Additional attributes (e.g., the restart attributes) can optionally be specified by the attribute list att.

7.3.5 The subroutine ch pnetcdf write time

SUBROUTINE ch pnetcdf write time (status, channel, dim time)
name type intent description
mandatory arguments:
status INTEGER OUT
channel TYPE(t channel) POINTER channel
dim time TYPE(t dimension) POINTER time dimension

This subroutine writes the time information, specified by the time dimension dim time to the output file of the
channel.

P. Jöckel et al.: CHANNEL User Manual 43

7.3.6 The subroutine ch pnetcdf write data

SUBROUTINE ch pnetcdf write data (status ,iomode ,channel ,object ,ptr ,jsnd
,i2nd)

name type intent description
mandatory arguments:
status INTEGER OUT
iomode INTEGER IN write output or restart file?
channel TYPE(t channel) POINTER channel
object TYPE(t channel object) POINTER object
ptr REAL(DP), DIMENSION(:,:,:,:) POINTER data array
jsnd INTEGER IN output data type
i2nd INTEGER IN index of secondary array

This subroutine writes one channel object data array of the object in channel to the corresponding output
(iomode=IOMODE OUT) or restart file (iomode=IOMODE RST), respectively. ptr is the pointer to the actual data array in
memory, jsnd indicates the type of primary or secondary (derived statistical) data (i.e., SND INS, SND AVE, SND STP,
SND MIN, SND MAX, SND CNT, SND CAV), and i2nd is the position of the actual secondary data in the internal secondary
data array.

7.3.7 The subroutine ch pnetcdf finish io

SUBROUTINE ch pnetcdf finish io (status, iomode, channel, lclose)
name type intent description
mandatory arguments:
status INTEGER OUT
iomode INTEGER IN read / write output or restart file?
channel TYPE(t channel) POINTER channel
lclose LOGICAL IN close file after read / write?

This subroutine closes (lclose=.TRUE.) or flushes (lclose=.FALSE.) the output (iomode=IOMODE OUT) or restart file
(iomode=IOMODE RST) of channel, respectively. The flushing is either system dependent (output buffer size), or can
be forced by the L FLUSH IOBUFFER namelist parameter (see Sect. 2.1).

7.3.8 The subroutine ch pnetcdf read data

SUBROUTINE ch pnetcdf read data (status, iomode, channel, object, ptr, jsnd,
i2nd)

name type intent description
mandatory arguments:
status INTEGER OUT
iomode INTEGER IN read output or restart file?
channel TYPE(t channel) POINTER channel
object TYPE(t channel object) POINTER object
ptr REAL(DP), DIMENSION(:,:,:,:) POINTER data array
jsnd INTEGER IN output data type
i2nd INTEGER IN index of secondary array

This subroutine reads one channel object data array of the object in channel from the corresponding restart file
(iomode=IOMODE RST). ptr is the pointer to the data in output layout. jsnd indicates the type of primary or secondary
(derived statistical) data (i.e., SND INS, SND AVE, SND STP, SND MIN, SND MAX, SND CNT, SND CAV), and i2nd is the
position of the actual secondary data in the internal secondary data array.

7.4 The implementation of alternative input / output formats

The file format specific subroutines (e.g., for netCDF, Sect. 7.2 and parallel netCDF, Sect. 7.3) are all called from
within the corresponding subroutines in the main input / output module messy main channel io.f90 (Sect. 7.1).

44 P. Jöckel et al.: CHANNEL User Manual

This implies that a basemodel that is already equipped with the CHANNEL submodel can easily be extended by
additional output formats and / or methods, since only CHANNEL needs to be extended. For such an extension only
a few steps are required:

First, a new module messy main channel format.f90 needs to be written, where format specifies the new file format.
This new module must contain all subroutines equivalent to the corresponding subroutines in
messy main channel netcdf.f90 (Sect. 7.2) or messy main channel pnetcdf.f90 (Sect. 7.3).

Second, the new subroutines from messy main channel format.f90 must be called from within the CASE-constructs
in messy main channel io.f90. The latter provides all required main entry points for input / output; exemplarily
the entry points for ASCII, GRIB, HDF4 and HDF5 formats are already prepared.

As a third step, it might be required to modify (extend) the module messy main channel.f90 at the positions marked
with

! +++ ADD OTHER OUTPUT FORMATS HERE

These modifications comprise

• a channel specific structure definition to store file format related meta information, e.g., the logical input /
output unit etc. (equivalent to t channel object netcdf, see Sect. 3.5),

• a channel object specific structure definition to store file format related meta information, e.g., variable identifiers
etc. (equivalent to t channel netcdf, see Sect. 3.6),

• potentially two short code sequences to manage the additional meta information for the secondary data arrays.

The information stored in these additional structures are then applied in the respective subroutines of
messy main channel format.f90.

8 A documented example

This section contains the README of the example code, which is part of the CHANNEL distribution.

==
THIS README CONTAINS A BRIEF DESCRIPTION OF THE MESSy GENERIC SUBMODEL CHANNEL
FILES AND THE SIMPLIFIED BASEMODEL/SUBMODEL.

A HIGHLY SIMPLIFIED BASE MODEL LAYER (BML)
==
(.) channel_bml.f90 ! initialisation, time loop, finish
(.) channel_bml_mem.f90 ! declaraion of parameters

AN EXEMPLAYRY BASEMODEL INTERFACE LAYER (BMIL) FOR THE SIMPLIFIED BASEMODEL
===
(+) messy_main_channel_bi.f90 ! create the basemodel specific channel

! setup

The basemodel (with name CHANNEL)
- initialises an exemplary channel environment with 4 representations:
- GP_3D_MID with rank 3 (longitude x latitude x level) and dimensions

36 x 18 x 2
- GP_3D_MID_BND with rank 3 (longitude x level x latitude) and dimensions

36 x 2 x 18
and 2 boundary boxes in longitude and latitude direction

- SCALAR with rank 0
- ARRAY with rank 1 and the dimension of the intrinsic fortran random

number generator state vector

P. Jöckel et al.: CHANNEL User Manual 45

- defines a standard stream (CHANNEL) with some SCALAR objects that contain the
current system time

- detects if it is started ’from scratch’, or if it is continued (restart);
the latter is triggered by the presence of a file restart_NNNN_CHANNEL.nc,
where NNNN is the restart cycle number (between 0001 and 9999); the restart
file with the largest cycle number is used for continuation.

- initialises the simplified submodel (see below)
- contains a time loop in which it
- calls the submodel to create some artifical (random) data (see below)
- writes output and/or restart information to netCDF files

- cleans up the memory

THE GENERIC SUBMODEL CHANNEL
============================
SUBMODEL CORE LAYER (SMCL):
(*) messy_main_constants_mem.f90 ! SMCL constants for various MESSy SMs

! (Not all of the contents is needed in
! the simplified CHANNEL box model.)

(*) messy_main_tools.f90 ! SMCL tools for varius MESSy submodels
! (Not all of the contents is needed in
! the simplified CHANNLE box model.)

(*) messy_main_blather.f90 ! SMCL log-message tools for various MESSy
! submodels. (Not all of the contents is

! needed in the simplified CHANNLE box
! model.)

(*) messy_main_channel_error.f90 ! error numbers and messages
(*) messy_main_channel_attributes.f90 ! types and routines for ... attributes,
(*) messy_main_channel_dimensions.f90 ! ... dimensions,
(*) messy_main_channel_dimvar.f90 ! ... dimension-variables,
(*) messy_main_channel_repr.f90 ! ... representations,
(*) messy_main_channel.f90 ! ... channels and channel-objects
(*) messy_main_channel_tracer.f90-bak ! association of tracer memory from

! MESSy generic submodel TRACER to
! channel memory; Note: this is not
! used in this simplified example.

(*) messy_main_channel_io.f90 ! main module for handling I/O
(*) messy_main_channel_netcdf.f90 ! I/O in netCDF format
(*) messy_main_channel_pnetcdf.f90 ! I/O based on parallel-netCDF

! Note: The simplified example has no
! parallel mode!

USER INTERFACE (UI):
(*) channel.nml ! user interface (namelist file)

! with CTRL and CPL namelists

AN EXEMPLARY ORDINARY SUBMODEL
==============================
(-) messy_submodel.f90
(-) messy_submodel_si.f90

This simple submodel defines a new channel and four objects in different
representations:
- f01: a 3-d field in GP_3D_MID representation (longitude x latitude x level)
- fbnd: a 3-d field in GP_3D_MID_BND representation

(longitude x level x latitude) with additional 2 boundary boxes,

46 P. Jöckel et al.: CHANNEL User Manual

both, in longitud and latitude direction, which are accessed internally,
but do not appear in the output

- s01: a SCALAR
- state: an ARRAY

f01 is filled with random numbers, s01 is the avarage of f01. In state, the
state vector of the fortran random number generator is saved to be able to
continue a pseudo-random number series after a basemodel restart.
Note: The ARRAY-length is the length of the intrinisic random number state
vector and therefore depends on the Fortran system.

NOTES:
======
(*) These files/modules need NOT to be changed in order to use CHANNEL in

another basemodel.
(+) These files/modules need to be rewritten for any other basemodel. The

examples of the simple basemodel here, however, show the overall structure
and the usage of the CHANNEL interface.

(.) These files/modules constitute a highly simplified basemodel and are
usually replaced by a specific model.

(-) These files/modules represent a simple MESSy submodel which is useless
outside the context of the simpified basemodel.

HOWTO COMPILE/RUN
=================
1. Edit the file ’Makefile’ and put in your specific compiler settings and

the path to the netCDF library.
Do not forget to activate the pre-processor in your compiler options!

2. > gmake
Note: The ’Makefile’ includes ’main.mk’ and ’depend.mk’. The latter

contains the file dependencies, which are automatically updated
(see 5 below).

Note: Other usefule gmake-targets are ’gmake clean’ and ’gmake distclean’.

3. > gmake run

4. Change entries in channel.nml and go back to 3.

5. Change the code (e.g. channel_bml_mem.f90) and go back to 2,3,4.
Note: The file dependencies are automatically updated with the perl-script

’sfmakedepend’. Make sure that the path to ’perl’ in the very first
line of this script is OK.

==

References

Jöckel, P., Sander, R., Kerkweg, A., Tost, H., and Lelieveld, J.: Technical Note: The Modular Earth Submodel
System (MESSy) - a new approach towards Earth System Modeling, Atmos. Chem. Phys., 5, 433–444, http:
//www.atmos-chem-phys.net/8/1677, 2005.

Jöckel, P., Kerkweg, A., Buchholz-Dietsch, J., Tost, H., Sander, R., and Pozzer, A.: Technical Note: Coupling of
chemical processes with the Modular Earth Submodel System (MESSy) submodel TRACER, Atmos. Chem. Phys.,
8, 1677–1687, http://www.atmos-chem-phys.net/8/1677, 2008.

