Journal Metrics

  • IF value: 6.086 IF 6.086
  • IF 5-year<br/> value: 6.174 IF 5-year
    6.174
  • SNIP value: 1.812 SNIP 1.812
  • IPP value: 5.140 IPP 5.140
  • SJR value: 3.969 SJR 3.969
  • h5-index value: 29 h5-index 29
Geosci. Model Dev., 4, 325-355, 2011
www.geosci-model-dev.net/4/325/2011/
doi:10.5194/gmd-4-325-2011
© Author(s) 2011. This work is distributed
under the Creative Commons Attribution 3.0 License.
MADE-in: a new aerosol microphysics submodel for global simulation of insoluble particles and their mixing state
V. Aquila1,*, J. Hendricks1, A. Lauer2, N. Riemer3, H. Vogel4, D. Baumgardner5, A. Minikin1, A. Petzold1, J. P. Schwarz6, J. R. Spackman6, B. Weinzierl1, M. Righi1, and M. Dall'Amico1,**
1Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
2International Pacific Research Center, University of Hawaii, Honolulu, Hawaii, USA
3Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
4Institut für Meteorologie und Klimaforschung, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
5Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
6Chemical Sciences Division, Earth System Research Laboratory, NOAA, Boulder, Colorado, USA
*now at: NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
**now at: Astrium GmbH, Ottobrunn, Germany

Abstract. Black carbon (BC) and mineral dust are among the most abundant insoluble aerosol components in the atmosphere. When released, most BC and dust particles are externally mixed with other aerosol species. Through coagulation with particles containing soluble material and condensation of gases, the externally mixed particles may obtain a liquid coating and be transferred into an internal mixture. The mixing state of BC and dust aerosol particles influences their radiative and hygroscopic properties, as well as their ability of forming ice crystals.

We introduce the new aerosol microphysics submodel MADE-in, implemented within the ECHAM/MESSy Atmospheric Chemistry global model (EMAC). MADE-in is able to track mass and number concentrations of BC and dust particles in their different mixing states, as well as particles free of BC and dust. MADE-in describes these three classes of particles through a superposition of seven log-normally distributed modes, and predicts the evolution of their size distribution and chemical composition. Six out of the seven modes are mutually interacting, allowing for the transfer of mass and number among them. Separate modes for the different mixing states of BC and dust particles in EMAC/MADE-in allow for explicit simulations of the relevant aging processes, i.e. condensation, coagulation and cloud processing. EMAC/MADE-in has been evaluated with surface and airborne measurements and mostly performs well both in the planetary boundary layer and in the upper troposphere and lowermost stratosphere.


Citation: Aquila, V., Hendricks, J., Lauer, A., Riemer, N., Vogel, H., Baumgardner, D., Minikin, A., Petzold, A., Schwarz, J. P., Spackman, J. R., Weinzierl, B., Righi, M., and Dall'Amico, M.: MADE-in: a new aerosol microphysics submodel for global simulation of insoluble particles and their mixing state, Geosci. Model Dev., 4, 325-355, doi:10.5194/gmd-4-325-2011, 2011.
 
Search GMD
Final Revised Paper
PDF XML
Citation
Discussion Paper
Share