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S 1. Temperature biases over two latitude ranges, 90◦ N–60◦ N (first row) and 60◦ S–90◦ S (second row),
and two seasons, winter (left column) and spring (right column). Biases are relative to the ERA-40 1980–
2001 monthly reanalysis, for CNRM-ACM (red line), and for five different “versions” of CNRM-CCM
(see text, all other full lines, noting that two versions produced non separable lines), and for ERA-Interim
(dashed cyan line). The grey area shows ERA-40 ±1 standard deviation.
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S 2. Climatological (1992–2001) zonal-mean O3 mixing (ppmv), for HALOE observations (black dots,
with grey area showing ± 1σ), CNRM-ACM (red line), and for five different “versions” of CNRM-
CCM (all other full lines, noting that two versions produced non separable lines). Vertical profiles at
(a) 77◦ N in March, (b) 0◦ N in March, and (c) 77◦ S in October. Zonal-means at 50 hPa in (d) March
and (e) October.
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S 3. Zonal tropical climatologies of the temperature at Equator 100 hPa with “observations”, ERA-40
(cyan line), ERA-Interim (dashed cyan line, ±1σ 1989–2001). Models are also shown, CNRM-ACM
(red line), and five different “versions” of CNRM-CCM (all other full lines, noting that two versions
produced non separable lines).
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S 4. Temperature biases over two latitude ranges, 90N-60N (first row) and 60S-90S (second row), and
two seasons, winter (left column) and spring (right column). Biases are relative to the ERA-40 1960-
1980 monthly reanalysis, for CNRM-ACM (red line), CNRM-CCM (black line) and CCMVal-2 REF-
B1 models (dashed orange lines), and for ERA-Interim (dashed cyan line), NCEP (dots), and UKMO
(crosses) reanalyses. The grey area shows ERA-40 ± 1 standard deviation.
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S 5. Annual temperature biases over 90N-90S. Biases are relative to the ERA-40 1980-1999 monthly re-
analysis, for CNRM-ACM (red line), CNRM-CCM (black line) and CCMVal-2 REF-B1 models (dashed
orange lines), and for ERA-Interim (dashed cyan line), NCEP (dots), and UKMO (crosses) reanalyses.
The grey area shows ERA-40 ± 1 standard deviation.
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S 6. Deviations of the climatological monthly mean water vapor mixing ratio from the time mean ratio
(1992-2001, averaged between 10S and 10N, ppmv), for HALOE observations and CCMVal-2 REF-B1
model simulations. CNRM-ACM and CNRM-CCM appear in the last row. Two identical cycles of the
tape recorder are shown.
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S 7. Climatological (1992–2001) zonal-mean CH4 mixing ratio (ppmv), for HALOE observations (black
dots, with grey area showing ± 1σ), CNRM-ACM (red line), CNRM-CCM (black line), and CCMVal-2
REF-B1 models (dashed orange lines). Vertical profiles at (a) 77◦ N in March, (b) 0◦ N in March, and
(c) 72◦ S in October. Zonal-means at 50 hPa in (d) March and (e) October.
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S 8. Time series of Cly mixing ratios (ppbv) at 50 hPa, 80S in October over the REF-B1 period, with
observations (diamonds, ± 1σ), CNRM-ACM (red line), CNRM-CCM (black line), and CCMVal-2
models outputs (orange dashed lines).
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S 9. Latitude-pressure cross-sections of differences in temperature between ERA-Interim and CNRM-
ACM (first and third columns), and between ERA-Interim and CNRM-CCM (second and fourth
columns), for DJF and MAM (first row), and for JJA and SON (second row) (1989-2000 period).
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S 10. Latitude-pressure cross-sections of differences in zonal wind between ERA-Interim and CNRM-
ACM (first and third columns), and between ERA-Interim and CNRM-CCM (second and fourth
columns), for DJF and MAM (first row), and for JJA and SON (second row) (1989-2000 period).
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S 11. Latitude-pressure cross-section of differences in ozone (ppmv) between the AC&C SPARC CMIP5
dataset (see Cionni et al. (2011)) and CNRM-ACM (left), or CNRM-CCM (right) (annual mean over
1990-1999).
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S 12. Zonal climatological (1980-1989 left column, 1990-1999 right column) total column ozone (DU) in
various latitude bands, 60N-90N, 90S-60S, 30N-60N, 60S-30S and 30S-30N, for NIWA BSv2.7 observa-
tions (cyan line)± 1σ (grey shading), CNRM-ACM (red line), CNRM-CCM (black line) and CCMVal-2
REB-B1 simulations (orange dashed lines).
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S 13. Taylor diagram (Taylor, 2001) of the diagnostics presented in the various paragraphs of the paper,
red dots for CNRM-ACM, black dots for CNRM-CCM.
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Table 1. Results of the t-Tests conducted on each month of the annual cycle of a given chemical com-
pound, hn1: 30◦ N–60◦ N at 1 hPa, hs1: 30◦ S–60◦ S at 1 hPa, hn50: 30◦ N–60◦ N at 50 hPa, hs50:
30◦ S–60◦ S at 50 hPa, trop1: 30◦ S–30◦ N at 1 hPa, trop50: 30◦ S–30◦ N at 50 hPa. A X indicates
where a significant difference (p < 0.05) has been found.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
BrO-hn1 X X X X X

BrO-hn50 X X X X X X X X X X X

BrO-hs1 X X X X X X

BrO-hs50 X X X X X X X X

BrO-trop1 X X X X X X X X X X X X

BrO-trop50 X X X X X X X X X X X X

CH4-hn1 X X X X X X X X X X X X

CH4-hn1 X X X X X X X X X X X X

CH4-hn50 X X X X X X X X X X X X

CH4-hn50 X X X X X X X X X X X X

CH4-hs1 X X X X X X X X X X X X

CH4-hs1 X X X X X X X X X X X X

CH4-hs50 X X X X X X X X X X X X

CH4-hs50 X X X X X X X X X X X X

CH4-trop1 X X X X X X X X X X X X

CH4-trop1 X X X X X X X X X X X X

CH4-trop50 X X X X X X X X

CH4-trop50 X X X X X X X X

ClONO2-hn1 X X X X X X X X X

ClONO2-hn50 X X X X X X X X X X X

ClONO2-hs1 X X X X X X X X

ClONO2-hs50 X X X X X X X X X X X

ClONO2-trop1 X X X X X X X X X X X X

ClONO2-trop50 X X X X X
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Table 2. Same as Table 1, with hn100: 40◦ N–60◦ N at 100 hPa, hs100: 40◦ S–60◦ S at 100 hPa, hn200:
40◦ N–60◦ N at 200 hPa, hs200: 40◦ S–60◦ S at 200 hPa.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
CO-hn1 X X X X X X X

CO-hn50 X X X X X X X X X X X X

CO-hs1 X X X X X X X

CO-hs50 X X X X X X X X X X X X

CO-trop1 X X X X X X X X X X X X

CO-trop50

H2O Eq 100hPa

H2O 20S20N 80hPa

H2O-hn100 X X X

H2O-hn1 X X X X X X X X X X X X

H2O-hn200 X X X X X X X X X X

H2O-hn50 X X X X X X X X X X X X

H2O-hs100

H2O-hs1 X X X X X X X X X X X X

H2O-hs200 X X X X X X X X

H2O-hs50 X X X X X X X X X X X X

H2O-trop1 X X X X X X X X X X X X

H2O-trop50

HCl-hn1 X X X X X X X X X X X X

HCl-hn50 X X X X X X X X X

HCl-hs1 X X X X X X X X X X X X

HCl-hs50 X X X X X X X X X X X X

HCl-trop1 X X X X X X X X X X X X

HCl-trop50

O3 20S20N 80hPa X X X X X X X X X X

Temp Eq 100hPa
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Table 3. Same as Tables 1 and 2.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
HNO3-hn100 X X X X X X X X X X X X

HNO3-hn1 X X X X X

HNO3-hn200 X X X

HNO3-hn50 X X X X X X X X X X X X

HNO3-hs100 X X

HNO3-hs1 X X X X X X X

HNO3-hs200 X X X X X X X X X X X X

HNO3-hs50 X X X X X X X X X X X X

HNO3-trop1 X X X X X X X X X X X X

HNO3-trop50 X X X X X X X

N2O5-hn1 X X X X X X X X X

N2O5-hn50 X X X X X X X X X X X X

N2O5-hs1 X X X X X X X X X X X

N2O5-hs50 X X X X X X X X X X X X

N2O5-trop1 X X X X X X X X X X X X

N2O5-trop50 X X X X X X X X X X X X

NO2-hn1 X X X X X X X X X X X X

NO2-hn50 X X X X X X X X X X

NO2-hs1 X X X X X X X X X X X X

NO2-hs50 X X X X X

NO2-trop1 X X X X X X X X X X X X

NO2-trop50 X X X X X X X X X X X X

O3-hn100 X X X X X X X X X X X X

O3-hn1 X X X X X X X X X X X X

O3-hn200 X X X X X X X X X X X X

O3-hn50 X X X X X X X X X X X X

O3-hs100 X X X X X X X X X X X X

O3-hs1 X X X X X X X X X X X X

O3-hs200 X X X X X X X X X X X X

O3-hs50 X X X X X X X X X X X X

O3-trop1 X X X X X X X X X X X X

O3-trop50 X X X X X X X X X X X X

18



Table 4. Results of the t-Tests conducted on each level of the vertical profiles of a given chemical
compound, for the months and latitudes of the diagnostics (see text and figures of the paper). A X
indicates where a significant difference (p < 0.05) has been found.

Diag/Level (hPa) 1 2 3 5 7 10 20 30 50 70 100 200
CH4 Equa MAR X X X X X X X X X X

CH4 77S OCT X X X X X X X X X X X X

CH4 77N MAR X X X X X X X X X X X X

H20 Equa MAR X X X X X X X

H2O 77S OCT X X X X X X X X X

H2O 77N MAR X X X X X X X X X X X

HCl Equa APR X X X X X X X X X X

HCl 72S NOV X X X X X X X X X X

HCl 77N APR X X X X X X X

O3 Equa MAR X X X X X X X X X X X X

O3 77S OCT X X X X X X X X X

O3 77N MAR X X X X X X X X X
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