Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 6.086 IF 6.086
  • IF 5-year<br/> value: 6.174 IF 5-year
  • SNIP value: 1.812 SNIP 1.812
  • IPP value: 5.140 IPP 5.140
  • SJR value: 3.969 SJR 3.969
  • h5-index value: 29 h5-index 29
Geosci. Model Dev., 6, 117-125, 2013
© Author(s) 2013. This work is distributed
under the Creative Commons Attribution 3.0 License.
29 Jan 2013
Using multi-model averaging to improve the reliability of catchment scale nitrogen predictions
J.-F. Exbrayat1,2, N. R. Viney3, H.-G. Frede2, and L. Breuer2
1Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
2Institute for Landscape Ecology and Resources Management (ILR), Research Centre for BioSystems, Land Use and Nutrition (IFZ), Justus-Liebig-Universität Gießen, Germany
3CSIRO Land and Water, Canberra, ACT, Australia

Abstract. Hydro-biogeochemical models are used to foresee the impact of mitigation measures on water quality. Usually, scenario-based studies rely on single model applications. This is done in spite of the widely acknowledged advantage of ensemble approaches to cope with structural model uncertainty issues. As an attempt to demonstrate the reliability of such multi-model efforts in the hydro-biogeochemical context, this methodological contribution proposes an adaptation of the reliability ensemble averaging (REA) philosophy to nitrogen losses predictions. A total of 4 models are used to predict the total nitrogen (TN) losses from the well-monitored Ellen Brook catchment in Western Australia. Simulations include re-predictions of current conditions and a set of straightforward management changes targeting fertilisation scenarios. Results show that, in spite of good calibration metrics, one of the models provides a very different response to management changes. This behaviour leads the simple average of the ensemble members to also predict reductions in TN export that are not in agreement with the other models. However, considering the convergence of model predictions in the more sophisticated REA approach assigns more weight to previously less well-calibrated models that are more in agreement with each other. This method also avoids having to disqualify any of the ensemble members.

Citation: Exbrayat, J.-F., Viney, N. R., Frede, H.-G., and Breuer, L.: Using multi-model averaging to improve the reliability of catchment scale nitrogen predictions, Geosci. Model Dev., 6, 117-125, doi:10.5194/gmd-6-117-2013, 2013.
Search GMD
Final Revised Paper
Discussion Paper