### **Supplementary Information**

# PEATBOG: A biogeochemical model for analyzing coupled carbon and nitrogen dynamics in northern peatlands

Yuanqiao Wu & Christian Blodau<sup>\*</sup>

Hydrology Group, Institute of Landscape Ecology, FB 14 Geosciences, University of Münster, Germany, Robert-Koch-Strasse 26-28, 48149 Münster, Germany.

\*Corresponding author, christian.blodau@uni-muenster.de; +1 251-88-30209, Fax: +1 251-83-38338

#### Supplementary Information 1 Figures

Figure 1. Graphic input in the *environmental* submodel: (a) thermal conductivity  $K_{thermal}$  (m day<sup>-1</sup>) change with depth, (b) the effect of air temperature on evapotranspiration rate ( $f_{T,EPT}$ , unitless), (c) the effects of WT depth ( $f_{WT,EPT}$ , unitless) (based on (Lafleur et al., 2005), Fig. 8),(d) the effect of moisture on hydraulic conductivity, (e) the relationship between WT depth (m) and water stored in the upper 1m peat, and (f) the effect of N/P ratio in moss and the uptake from deposited N in moss (fraction of total deposition). The values of (a) to (d) are listed in Table S5.



Figure 2. Graphic input in the vegetation sub-model: (a) Water table (WT) depth on the activities in shoots (am,sh, unitless) and (b) roots (am,rt, unitless), (c) the seasonal effect on moss leaf photosynthesis capacity (fseason,PSN, unitless), (d) the nitrogen and (e) temperature effect on the leaf photosynthesis capacity ( $f_{N,PSNmax}$ , unitless), and (f) leaf photosynthesis rate (LeafPSN, unit: umol m<sup>-2</sup> s<sup>-1</sup>) acclimated to incident irradiance.



Figure 3. Graphic input in the SOM and Dissolved sub-models: (a) inhibition effects of dissolved  $CO_2$  concentration (finhibi\_ $CO_2$ , unitless) and (b) dissolved  $CH_4$  concentration (finhibi\_ $CH_4$ , unitless) in soil water on the decomposition rates of SOM, (c) the effect of dissolved inorganic nitrogen (DIN) on N<sub>2</sub> fixation rate ( $f_{DIN,Nfixation}$ , unitless) and (d) on mineralization and immobilization rates (fN, unitless) of soil organic matter (SOM), (e) temperature effect on the maximum  $CH_4$ . concentration in soil above which ebullition occurs, and (f) the change of electric resistance (unit:  $\Omega$ ) of electron transfer in peat, redox potential (unit: V) in peat and electrical current *I<sub>nanowire</sub>* (unit: A) in peat with depth on a summer day (the dotted line indicates water table depth on that day).





Figure 4. Environmental boundary conditions used as inputs for the model simulation of the Mer Bleue Bog from 1999 to 2009.

## Supplementary information 2 Tables

Table 1 Simulated and observed estimates of annual C pools (gC m<sup>-2</sup>) and C fluxes (gC m<sup>-2</sup> yr<sup>-1</sup>) from 1999 to 2004.

|                          |       |      |      | Sim   | ulated |       |      |          | Observed                                   |
|--------------------------|-------|------|------|-------|--------|-------|------|----------|--------------------------------------------|
|                          | 1999  | 2000 | 2001 | 2002  | 2003   | 2004  | Mean | std. Dev |                                            |
| Plants C                 | 768   | 753  | 754  | 751   | 747    | 732   | 751  | 11.6     |                                            |
| Moss C                   | 69    | 70   | 70   | 68    | 69     | 70    | 69   | 0.8      | 66 <sup>a</sup>                            |
| Gram. shoot C            | 8     | 8    | 8    | 8     | 8      | 8     | 8    | 0.2      | 4 <sup>a</sup>                             |
| Gram. root C             | 19    | 18   | 18   | 18    | 18     | 18    | 18   | 0.1      | 22 <sup>a</sup>                            |
| Shrub shoot C            | 119   | 120  | 117  | 116   | 114    | 113   | 117  | 2.5      | 120 <sup>a</sup>                           |
| Shrubs root C            | 554   | 537  | 541  | 542   | 537    | 523   | 539  | 10.0     | 540 <sup>a</sup>                           |
| Soil water C             | 1008  | 1020 | 1021 | 1024  | 1030   | 1034  | 1023 | 9.1      |                                            |
| DOC                      | 445   | 446  | 452  | 457   | 463    | 457   | 453  | 7.0      |                                            |
| CH <sub>4</sub>          | 39    | 40   | 39   | 39    | 39     | 40    | 39   | 0.3      |                                            |
| CO <sub>2</sub>          | 524   | 534  | 530  | 528   | 528    | 538   | 530  | 4.9      |                                            |
| GPP                      | 523   | 513  | 609  | 560   | 562    | 563   | 555  | 34.0     | 550 <sup>a</sup>                           |
| GPP moss                 | 91    | 135  | 172  | 151   | 159    | 167   | 146  | 29.6     | 120 <sup>a</sup>                           |
| GPP Gram.                | 22    | 22   | 23   | 23    | 24     | 23    | 23   | 0.6      | 40 <sup>a</sup>                            |
| GPP shrubs               | 410   | 355  | 414  | 387   | 379    | 374   | 386  | 22.4     | 390 <sup>a</sup>                           |
| AR                       | 275   | 242  | 299  | 283   | 275    | 247   | 269  | 22.5     | 250 <sup>a</sup>                           |
| AR moss                  | 52    | 74   | 93   | 82    | 83     | 88    | 79   | 14.7     | 44 <sup>a</sup>                            |
| AR gram, shoot           | 6     | 6    | 6    | 6     | 6      | 6     | 6    | 0.2      |                                            |
| AR shrub shoot           | 68    | 52   | 63   | 60    | 57     | 49    | 58   | 7.1      |                                            |
| AR gram, root            | 8     | 7    | 7    | 7     | 7      | 7     | 7    | 0.5      |                                            |
| AR shrub root            | 141   | 103  | 130  | 128   | 122    | 95    | 120  | 17.5     |                                            |
| Litter                   | 226   | 212  | 233  | 225   | 223    | 218   | 223  | 7.1      | 300 <sup>a</sup>                           |
| Litter moss              | 46    | 43   | 54   | 50    | 52     | 51    | 49   | 4.1      | 55 <sup>a</sup>                            |
| Litter vascular          | 05    | 50   |      | 00    |        | 50    |      |          | 00 0 4 <sup>8</sup>                        |
| shoot                    | 65    | 56   | 66   | 62    | 60     | 58    | 61   | 3.9      | 69-84                                      |
| Litter Gram. shoot       | 8     | 7    | 8    | 7     | 8      | 7     | 7    | 0.4      |                                            |
| Litter shrubs shoot      | 57    | 49   | 59   | 55    | 53     | 51    | 54   | 3.6      |                                            |
| Litter vascular root     | 115   | 113  | 113  | 112   | 111    | 109   | 112  | 1.9      | 161-176 <sup>a</sup>                       |
| Litter Gram. root        | 3     | 3    | 3    | 3     | 3      | 3     | 3    | 0.03     |                                            |
| Litter shrubs root       | 111   | 110  | 109  | 109   | 107    | 106   | 109  | 1.9      |                                            |
| vascular plants          | 179   | 169  | 179  | 175   | 171    | 167   | 173  | 5.1      | 245 <sup>a</sup>                           |
| Exudation total          | 62    | 59   | 85   | 80    | 76     | 74    | 73   | 9.8      | 16.5-68.8 <sup>b</sup>                     |
| Exudation moss           | 8     | 12   | 26   | 21    | 26     | 28    | 20   | 8.2      | 3.6-15 <sup>b</sup>                        |
| Exudation gram.          | 0     | 0    | 0    | 0     | 0      | 0     | 0    | 0.0      | 1.2-5 <sup>b</sup>                         |
| Exudation shrubs         | 54    | 47   | 58   | 58    | 49     | 46    | 52   | 5.4      | 11.7-48.8 <sup>a, b</sup>                  |
| HR                       | 297   | 238  | 264  | 265   | 252    | 199   | 252  | 32.8     | 211 <sup>a</sup>                           |
| CH₄ production           | 10    | 11   | 10   | 10    | 11     | 11    | 11   | 0.5      |                                            |
| DOC production           | 18    | 15   | 17   | 18    | 17     | 13    | 16   | 1.8      |                                            |
| ER                       | 573   | 470  | 581  | 570   | 533    | 431   | 526  | 62.4     | 461 <sup>°</sup>                           |
| NEP                      | -50   | 43   | 28   | -9    | 29     | 133   | 29   | 61.0     | 40.2 (±40.5) <sup>d</sup>                  |
| CO <sub>2</sub> emission | 448   | 339  | 419  | 421   | 387    | 288   | 384  | 60.0     |                                            |
| CH₄ emission             | 3.8   | 5.0  | 3.2  | 4.1   | 3.8    | 5.5   | 4.2  | 0.9      | 3.7 (±0.5) <sup>d</sup>                    |
| Plant mediated           | 2.7   | 4.4  | 2.6  | 2.8   | 2.8    | 4.7   | 3.3  | 1.0      |                                            |
| Ebullition               | 0.5   | 0.5  | 0.4  | 0.7   | 0.6    | 0.8   | 0.6  | 0.2      |                                            |
| Diffusion                | 0.62  | 0.14 | 0.27 | 0.62  | 0.42   | 0.01  | 0.35 | 0.3      |                                            |
| DOC export               | 11.0  | 16.8 | 7.8  | 13.8  | 19.0   | 19.5  | 14.6 | 4.7      | 14.9 (±3.1) <sup>d</sup> ,8.3 <sup>f</sup> |
| DIC export               | 0.2   | 0.6  | 0.1  | 0.2   | 0.2    | 0.5   | 0.3  | 0.2      | 3.9 <sup>e</sup>                           |
| NECB                     | -64.8 | 20.4 | 16.5 | -27.5 | 5.9    | 107.0 | 9.6  | 57.6     | 21.5 (±39) <sup>d</sup>                    |

<sup>a</sup>(Moore et al., 2002); <sup>b</sup>(Kuzyakov, 2002); <sup>c</sup>(Lafleur et al., 2001); <sup>d</sup>(Roulet et al., 2007); <sup>e</sup>(Billett and Moore, 2007); <sup>f</sup>(Fraser et al., 2001)

|                              | 1999             | 2000             | 2001             | 2002             | 2003             | 2004             | Mean             | (std. Dev)       |
|------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Total plant N                | 16.0             | 16.0             | 15.7             | 15.7             | 15.6             | 15.5             | 15.8             | 0.18             |
| Moss N                       | 1.5              | 1.5              | 1.5              | 1.5              | 1.5              | 1.5              | 1.5              | 0.02             |
| Gram. N                      | 0.6              | 0.6              | 0.6.             | 0.6              | 0.6              | 0.7              | 0.7              | 0.04             |
| Gram. shoot N                | 0.2              | 0.2              | 0.2              | 0.2              | 0.2              | 0.2              | 0.2              | 0.00             |
| Gram. root N                 | 0.4              | 0.4              | 0.4              | 0.4              | 0.4              | 0.4              | 0.4              | 0.00             |
| Shrub N                      | 13.9             | 13.8             | 13.6             | 13,6             | 13.5             | 13.2             | 13.6             | 0.21             |
| Shrub shoot N                | 2.5              | 2.5              | 2.4              | 2.4              | 2.3              | 2.3              | 2.4              | 0.09             |
| Shrub root N                 | 11.4             | 11.3             | 11.2             | 11.2             | 11.1             | 11.0             | 11.2             | 0.12             |
| Total DIN                    | 1.3              | 1.3              | 1.3              | 1.3              | 1.3              | 1.3              | 1.3              | 0.00             |
| $NH_4^+$                     | 1.3              | 1.3              | 1.3              | 1.3              | 1.3              | 1.3              | 1.3              | 0.00             |
| NO <sub>3</sub> <sup>-</sup> | 10 <sup>-7</sup> |
| NO <sub>2</sub>              | 10 <sup>-8</sup> |
| Total DON                    | 10 <sup>-4</sup> | 10 <sup>-5</sup> |
| Litter                       | 3.9              | 3.7              | 3.9              | 3.8              | 3.8              | 3.7              | 3.8              | 0.11             |
| Litter Gram. shoot           | 0.2              | 0.1              | 0.2              | 0.2              | 0.2              | 0.2              | 0.2              | 0.01             |
| Litter shrub shoot           | 0.7              | 0.6              | 0.6              | 0.6              | 0.6              | 0.5              | 0.6              | 0.04             |
| Litter Gram. root            | 0.1              | 0.1              | 0.1              | 0.1              | 0.1              | 0.1              | 0.1              | 0.00             |
| Litter shrub root            | 2.2              | 2.2              | 2.2              | 2.2              | 2.1              | 2.1              | 2.2              | 0.04             |
| Litter moss                  | 0.8              | 0.8              | 0.9              | 0.8              | 0.8              | 0.8              | 0.8              | 0.05             |
| Exudation                    | 0.04             | 0.06             | 0.05             | 0.04             | 0.04             | 0.04             | 0.04             | 0.01             |
| Exudation moss               | 0.01             | 0.04             | 0.02             | 0.01             | 0.01             | 0.02             | 0.02             | 0.01             |
| Exudation Gram.              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             |
| Exudation shrub              | 0.03             | 0.02             | 0.03             | 0.03             | 0.03             | 0.02             | 0.03             | 0.00             |
| N mineralization             | 2.2              | 1.6              | 2.0              | 2.1              | 2.0              | 1.4              | 1.9              | 0.30             |
| DON production               | 0.6              | 0.5              | 0.5              | 0.6              | 0.5              | 0.4              | 0.5              | 0.07             |
| N uptake                     | 1.8              | 1.6              | 1.8              | 1.8              | 1.7              | 1.4              | 1.7              | 0.18             |
| Graminoids DIN               | 0.1              | 0.1              | 0.1              | 0.1              | 0.1              | 0.1              | 0.1              | 0.01             |
| Shrubs DIN                   | 1.7              | 1.5              | 1.7              | 1.6              | 1.6              | 1.2              | 1.6              | 0.17             |
| Graminoids DON               | 0.0              | 0.0              | 0.0              | 0.0              | 0.0              | 0.0              | 0.0              | 0.00             |
| Shrubs DON                   | 10 <sup>-4</sup> |
| N inception mosses           | 0.76             | 0.76             | 0.76             | 0.76             | 0.76             | 0.76             | 0.76             | 0.00             |
| N through fall               | 0.04             | 0.04             | 0.04             | 0.04             | 0.04             | 0.04             | 0.04             | 0.00             |
| N2 fixation                  | 1.0              | 1.0              | 1.0              | 1.0              | 1.0              | 1.0              | 1.0              | 0.00             |
| DON export                   | 0.03             | 0.04             | 0.02             | 0.02             | 0.02             | 0.08             | 0.04             | 0.02             |
| DIN export                   | 0.00             | 0.01             | 0.00             | 0.00             | 0.01             | 0.01             | 0.01             | 0.00             |
| N sequestration in peat      | 1.2              | 1.7              | 1.4              | 1.2              | 1.3              | 1.9              | 1.4              | 0.28             |

Table 2 Simulated annual N pools (gN m<sup>-2</sup>) and N fluxes (gN m<sup>-2</sup> yr<sup>-1</sup>) from 1999 to 2004.

Table 3 Changes in simulated carbon and nitrogen cycling components due to the change of air temperature (Air T), precipitation (*Pre*), annual nitrogen deposition (N, unit  $gN \cdot m^{-2} \cdot yr^{-1}$ ) and parameters: temperature effect on the decomposition of labile (*L*) and recalcitrant ( $Q_{10,R}$ ), potential decomposition constant of labile soil ( $k_{Lpot}$ ) and of recalcitrant soil ( $k_{R,pot}$ ). The changes are expressed in percentages relative to the baseline simulations. Negative signs indicate decreases relative to the baseline and positive signs indicate increases.

|            | GPP | AR  | NPP<br>moss | NPP<br>Gram | NPP<br>shrub | HR  | CH <sub>4</sub> | ER  | DOC | DIC | NEE  | NECB  | ΔC<br>SOM | ΔN<br>SOM |
|------------|-----|-----|-------------|-------------|--------------|-----|-----------------|-----|-----|-----|------|-------|-----------|-----------|
| Air T (-1) | -2  | -4  | 0           | -2          | 0            | -7  | +4              | -6  | 0   | +16 | +65  | +228  | +70       | +1        |
| Air T (+1) | +2  | +4  | -3          | -1          | 0            | +7  | -6              | +6  | -1  | -13 | -72  | +251  | -81       | -2        |
| Air T (+3) | +3  | +12 | -14         | -13         | -1           | +20 | -18             | +17 | -5  | -32 | -232 | -810  | -275      | -10       |
| Air T (+5) | +4  | +20 | -34         | +11         | -3           | +32 | -23             | +28 | -11 | -46 | -416 | -1450 | -497      | -19       |
| Pre (-30%) | +1  | +6  | 0           | +6          | -4           | +11 | -25             | +9  | -36 | -66 | -148 | -443  | -231      | -46       |

| Pre (-15%)               | +1  | +3  | 0    | +3   | -2   | +5  | -10 | +5  | -14 | -38  | -69  | -214 | -100 | -19  |
|--------------------------|-----|-----|------|------|------|-----|-----|-----|-----|------|------|------|------|------|
| Pre (+15%)               | -1  | -2  | +1   | -3   | +1   | -4  | +13 | -3  | +9  | +52  | +36  | +106 | +80  | +15  |
| Pre (+30%)               | -1  | -4  | +1   | -5   | +2   | -7  | +19 | -6  | +14 | +108 | +87  | +273 | +146 | +27  |
| N (0.2)                  | -18 | -30 | +5   | -28  | -11  | -6  | -1  | -18 | +8  | +45  | -28  | -114 | +81  | -45  |
| N (1.4)                  | +9  | +17 | -20  | +30  | +8   | 0   | +5  | +8  | -3  | -10  | +22  | +80  | -14  | +59  |
| N (2.0)                  | +13 | +19 | -23  | +70  | +13  | 0   | +12 | +9  | -3  | -10  | +71  | +252 | +41  | +115 |
| N (2.6)                  | +16 | +26 | -43  | +260 | +12  | -1  | +22 | +12 | -4  | -14  | +93  | +327 | +106 | +190 |
| N (3.2)                  | +19 | +31 | -59  | +560 | +4   | -2  | +32 | +14 | -5  | -16  | +122 | -141 | +189 | +251 |
| Q <sub>10,R</sub> (2)    | -1  | -1  | -100 | -100 | -100 | -14 | -13 | -8  | -8  | -4   | +128 | +480 | +277 | +31  |
| Q <sub>10,L</sub> (3.3)  | 0   | 0   | +1   | 0    | 0    | 0   | 0   | 0   | +6  | +3   | 0    | +4   | -51  | -1   |
| k <sub>Rpot</sub> (+25%) | +1  | +2  | +54  | -13  | +2   | +20 | +26 | +11 | +13 | +11  | -175 | -667 | -399 | -45  |
| k <sub>Rpot</sub> (-25%) | -2  | -2  | -4   | +1   | +7   | -22 | -26 | -12 | -14 | -13  | +186 | +707 | +430 | +44  |
| k <sub>Lpot</sub> (+25%) | 0   | 0   | -100 | -100 | -100 | +6  | +1  | +3  | +5  | -1   | -50  | -187 | -110 | -12  |
| k <sub>Lpot</sub> (-25%) | 0   | 0   | -100 | -100 | -100 | -7  | -2  | -4  | -5  | -1   | +62  | -137 | +136 | +10  |

Table 4 Initials for the initialization simulations. The initials values of C and N pools were calculated from bulk density at each layer depth and C/N ratio (Blodau and Moore, 2002; Blodau et al., 2006). The fraction of labile and recalcitrant was assumed based on (Bridgham et al., 1998). The initial concentration of  $CO_2$ ,  $CH_4$  and  $H_2$  were assumed based on (Beer and Blodau, 2007).

| Layer | SOM labile<br>C (g) | SOM<br>recalcitrant C<br>(g) | SOM labile<br>N (g) | SOM<br>recalcitrant N<br>(g) | CO <sub>2</sub><br>concentration<br>(mmol m <sup>-3</sup> ) | CH <sub>4</sub><br>concentration<br>(mmol m <sup>-3</sup> ) | H <sub>2</sub><br>concentration<br>(nmol L <sup>-1</sup> ) |
|-------|---------------------|------------------------------|---------------------|------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|
| 1     | 266.5               | 1066.0                       | 5.8                 | 23.2                         | 0                                                           | 0                                                           | 20                                                         |
| 2     | 236.9               | 1737.2                       | 5.0                 | 37.0                         | 0                                                           | 0                                                           | 20.5                                                       |
| 3     | 248.4               | 2235.8                       | 4.7                 | 42.2                         | 0                                                           | 0                                                           | 21                                                         |
| 4     | 234.0               | 2690.4                       | 4.1                 | 47.2                         | 0                                                           | 0                                                           | 21.5                                                       |
| 5     | 232.3               | 3086.5                       | 4.1                 | 55.1                         | 0                                                           | 0                                                           | 22                                                         |
| 6     | 220.8               | 3459.5                       | 4.8                 | 75.2                         | 0                                                           | 0                                                           | 22.5                                                       |
| 7     | 200.8               | 3815.6                       | 5.0                 | 95.4                         | 500                                                         | 50                                                          | 23                                                         |
| 8     | 173.3               | 4159.1                       | 4.4                 | 106.6                        | 1000                                                        | 100                                                         | 23.5                                                       |
| 9     | 138.9               | 4492.6                       | 3.8                 | 121.4                        | 1500                                                        | 150                                                         | 24                                                         |
| 10    | 98.3                | 4818.3                       | 3.0                 | 146.0                        | 2000                                                        | 200                                                         | 24.5                                                       |
| 11    | 77.8                | 5111.8                       | 2.5                 | 164.9                        | 2500                                                        | 250                                                         | 26                                                         |
| 12    | 54.5                | 5397.6                       | 1.9                 | 186.1                        | 3000                                                        | 300                                                         | 30                                                         |
| 13    | 28.5                | 5676.7                       | 0.8                 | 149.4                        | 3500                                                        | 350                                                         | 40                                                         |
| 14    | 11.9                | 5938.2                       | 0.3                 | 148.5                        | 4000                                                        | 400                                                         | 50                                                         |
| 15    | 6.2                 | 6181.3                       | 0.2                 | 154.5                        | 4500                                                        | 450                                                         | 55                                                         |
| 16    | 5.8                 | 6412.3                       | 0.1                 | 160.3                        | 5000                                                        | 500                                                         | 60                                                         |
| 17    | 5.3                 | 6637.2                       | 0.1                 | 165.9                        | 5000                                                        | 500                                                         | 70                                                         |
| 18    | 4.1                 | 6857.2                       | 0.1                 | 171.4                        | 5000                                                        | 500                                                         | 80                                                         |
| 19    | 2.8                 | 7072.1                       | 0.1                 | 176.8                        | 5000                                                        | 500                                                         | 90                                                         |
| 20    | 174.8               | 873875.2                     | 4.4                 | 21846.9                      | 5000                                                        | 500                                                         | 100                                                        |

Units were standardized to  $1 \text{ m}^2$  area of peatlands for model output.

| Table 5 | Parameter | values | in | Figure | <b>S</b> 1 |
|---------|-----------|--------|----|--------|------------|
|---------|-----------|--------|----|--------|------------|

-

| Layer depth (m)                                                        | 0     | -0.1 | -0.2  | -0.3  | -0.4  | -0.5  | -0.6  | -0.7  | -0.8  | -0.9  | -1.0  |
|------------------------------------------------------------------------|-------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Thermal conductivity<br>(K <sub>thermal,0</sub> ) (m s <sup>-1</sup> ) | 0.014 | 0.01 | 0.007 | 0.006 | 0.006 | 0.006 | 0.006 | 0.006 | 0.006 | 0.006 | 0.006 |
|                                                                        |       |      |       |       |       |       |       |       |       |       |       |
|                                                                        |       |      |       |       |       |       |       |       |       |       |       |

| Effect of temperature<br>on evapotranspiration<br>rate (unitless) | 0             | 0.02  | 0.04  | 0.07  | 0.11 (  | ).17 | 0.265 | 0.375 | 5 0.51 | 0.655 | 0.815 | 1             |
|-------------------------------------------------------------------|---------------|-------|-------|-------|---------|------|-------|-------|--------|-------|-------|---------------|
|                                                                   |               |       |       |       |         |      |       |       |        |       |       |               |
| Water table depth (m)                                             | below<br>-0.5 | -0.5  | -0.45 | -0.4  | -0.35   | 5 -( | 0.3   | -0.25 | -0.2   | -0.15 | -0.1  | above<br>-0.1 |
| Effect of WT depth on<br>evapotranspiration<br>rate (unitless)    | 0.55          | 0.53  | 0.6   | 0.57  | 0.56    | 0    | .57   | 0.64  | 0.738  | 0.832 | 0.927 | 1             |
|                                                                   |               |       |       |       |         |      |       |       |        |       |       |               |
| Volumetric water content (m <sup>3</sup> m <sup>-3</sup> )        | 0             | 0.1   | 0.2   | 0.3   | 0.4     | C    | ).5   | 0.6   | 0.7    | 0.8   | 0.9   | 1             |
| log value of hydraulic conductivity (unitless)                    | -10           | -4.04 | -1.52 | -0.58 | 3 -0.26 | 6 -0 | ).13  | -0.06 | -0.05  | -0.05 | -0.05 | 0             |

| Table 6 Pa | arameters for H | Henrv's law | . Fick's law | and electron | flows |
|------------|-----------------|-------------|--------------|--------------|-------|
|------------|-----------------|-------------|--------------|--------------|-------|

| Parameter              | Description                                                                | Value                                                                                                                   | Unit                                            | Source                                                                   |
|------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------|
| $K_{H,DMg,0}$          | Henry's constant of dissolved gas $(DM_g)$ at 25 °C                        | $\begin{array}{l} {\sf K}_{\rm H,CO2} = 0.034 \\ {\sf K}_{\rm H,CH4} = 0.014 \\ {\sf K}_{\rm H,O2} = 0.013 \end{array}$ | mol L <sup>-1</sup><br>atm <sup>-1</sup>        | (Sander, 1999)                                                           |
| $C_{\text{H,inv,DMg}}$ | Henry's law coefficient                                                    | $\begin{array}{l} C_{H,inv,CH4} = 1600 \\ C_{H,inv,CO2} = 2400 \\ C_{H,inv,O2} = 1500 \end{array}$                      |                                                 | (Sander, 1999)                                                           |
| D <sub>DMS,0</sub>     | Standard diffusion coefficient of solutes                                  | $D_{DOM} = 1.19 \cdot 10^{-5}$<br>$D_{NO3} = 1.69 \cdot 10^{-4}$<br>$D_{NH4} = 8.47 \cdot 10^{-5}$                      | m <sup>2</sup> day <sup>-1</sup>                | (Krom and Berner, 1980, Jones et<br>al., 2005, Van Rees et al. 2003)     |
| D <sub>DMg,0</sub>     | Standard diffusion coefficient of gases                                    | $D_{CO2} = 1.51 \cdot 10^{-4}$<br>$D_{CH4} = 1.36 \cdot 10^{-4}$<br>$D_{O2} = 1.56 \cdot 10^{-4}$                       | m <sup>2</sup> day <sup>-1</sup>                | (Broecker and Peng, 1974; Cornel<br>et al., 1986; Fredlund et al., 1993) |
| С                      | Coulombs, the magnitude of<br>electrical charge in protons of<br>electrons | 6.2415·10 <sup>18</sup>                                                                                                 | e <sup>-</sup> electron<br>proton <sup>-1</sup> | SI                                                                       |
| NA                     | Avogadro constant                                                          | 6.02·10 <sup>23</sup>                                                                                                   | mol⁻¹                                           | SI                                                                       |
| F                      | Faraday constant                                                           | 96490                                                                                                                   | Coulombs<br>mol <sup>-1</sup>                   | The NIST Reference on<br>Constants, Units and Uncertainty                |
| $\Delta G^0{}_{r,i}$   | standard change of reaction in<br>Gibbs free energy                        | -193.1                                                                                                                  | kJ mol <sup>-1</sup>                            | (Nordstrom and Munoz,1994;<br>(Stumm and Morgan))                        |
| R                      | gas constant                                                               | 8.13                                                                                                                    | $J K^{-1} mol^{-1}$                             |                                                                          |

#### References

- Beer, J., and Blodau, C.: Transport and thermodynamics constrain belowground carbon turnover in a northern peatland, Geochimica et Cosmochimica Acta, 71, 2989-3002, 10.1016/j.gca.2007.03.010, 2007.
- Billett, M., and Moore, T.: Supersaturation and evasion of CO<sub>2</sub> and CH<sub>4</sub> in surface waters at Mer Bleue peatland, Canada, Hydrological Processes, 22, 2044-2054, 2007.
- Blodau, C., and Moore, T. R.: Macroporosity affects water movement and pore water sampling in peat soils, Soil Science, 167, 98-109, 2002.

- Blodau, C., Basiliko, N., Mayer, B., and Moore, T. R.: The fate of experimentally deposited nitrogen in mesocosms from two Canadian peatlands, The Science of the total environment, 364, 215-228, 10.1016/j.scitotenv.2005.06.002, 2006.
- Bridgham, S. D., Updegraff, K., and Pastor, J.: Carbon, nitrogen, and phosphorus mineralization in northern wetlands, Ecology, 79, 1545-1561, 1998.
- Broecker, W., and Peng, T. H.: Gas exchange rates between air and sea, Tellus A, 26, 1974.
- Cornel, P. K., Summers, R. S., and Roberts, P. V.: Diffusion of humic acid in dilute aqueous solution, Journal of Colloid and Interface Science, 110, 149-164, 1986.
- Fraser, C. J. D., Roulet, N. T., and Moore, T. R.: Hydrology and dissolved organic carbon biogeochemistry in an ombrotrophic bog, Hydrological Processes, 15, 3151-3166, 10.1002/hyp.322, 2001.
- Fredlund, D. G., Rahardjo, H., and Fredlund, D. G.: Soil mechanics for unsaturated soils, Wiley New York, 1993.
- Kuzyakov, Y.: Separating microbial respiration of exudates from root respiration in non-sterile soils: a comparison of four methods, Soil Biology and Biochemistry, 34, 1621-1631, 2002.
- Lafleur, P. M., Roulet, N. T., and Admiral, S. W.: Annual cycle of CO<sub>2</sub> exchange at a bog peatland, Journal of Geophysical Research, 106, 3071, 10.1029/2000jd900588, 2001.
- Lafleur, P. M., Hember, R. A., Admiral, S. W., and Roulet, N. T.: Annual and seasonal variability in evapotranspiration and water table at a shrub-covered bog in southern Ontario, Canada, Hydrological Processes, 19, 3533-3550, 10.1002/hyp.5842, 2005.
- Moore, T. R., Bubier, J. L., Frolking, S. E., Lafleur, P. M., and Roulet, N. T.: Plant biomass and production and CO<sub>2</sub> exchange in an ombrotrophic bog, Journal of Ecology, 90, 25-36, 2002.
- Nordstrom, D.K. and Munoz, J.L.: Geochemical Thermodynamics, Blackwell Scientific Publications (1994), p. 493
- Roulet, N. T., Lafleur, P. M., Richard, P. J. H., Moore, T. R., Humphreys, E. R., and Bubier, J.: Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland, Global Change Biology, 13, 397-411, 10.1111/j.1365-2486.2006.01292.x, 2007.
- The NIST Reference on Constants, Units, and Uncertainty: US National Institute of Standards and Technology. June 2011. Retrieved 2012-01-30