Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Geosci. Model Dev., 6, 1871-1888, 2013
© Author(s) 2013. This work is distributed
under the Creative Commons Attribution 3.0 License.
Model evaluation paper
01 Nov 2013
MEDSLIK-II, a Lagrangian marine surface oil spill model for short-term forecasting – Part 2: Numerical simulations and validations
M. De Dominicis1, N. Pinardi2, G. Zodiatis3, and R. Archetti4 1Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy
2Corso di Scienze Ambientali, University of Bologna, Ravenna, Italy
3Oceanography Centre, University of Cyprus, Nicosia, Cyprus
4DICAM, Dipartimento di Ingegneria Civile, Chimica Ambientale e dei Materiali, University of Bologna, Bologna, Italy
Abstract. In this paper we use MEDSLIK-II, a Lagrangian marine surface oil spill model described in Part 1 (De Dominicis et al., 2013), to simulate oil slick transport and transformation processes for realistic oceanic cases, where satellite or drifting buoys data are available for verification. The model is coupled with operational oceanographic currents, atmospheric analyses winds and remote sensing data for initialization. The sensitivity of the oil spill simulations to several model parameterizations is analyzed and the results are validated using surface drifters, SAR (synthetic aperture radar) and optical satellite images in different regions of the Mediterranean Sea. It is found that the forecast skill of Lagrangian trajectories largely depends on the accuracy of the Eulerian ocean currents: the operational models give useful estimates of currents, but high-frequency (hourly) and high-spatial resolution is required, and the Stokes drift velocity has to be added, especially in coastal areas. From a numerical point of view, it is found that a realistic oil concentration reconstruction is obtained using an oil tracer grid resolution of about 100 m, with at least 100 000 Lagrangian particles. Moreover, sensitivity experiments to uncertain model parameters show that the knowledge of oil type and slick thickness are, among all the others, key model parameters affecting the simulation results. Considering acceptable for the simulated trajectories a maximum spatial error of the order of three times the horizontal resolution of the Eulerian ocean currents, the predictability skill for particle trajectories is from 1 to 2.5 days depending on the specific current regime. This suggests that re-initialization of the simulations is required every day.

Citation: De Dominicis, M., Pinardi, N., Zodiatis, G., and Archetti, R.: MEDSLIK-II, a Lagrangian marine surface oil spill model for short-term forecasting – Part 2: Numerical simulations and validations, Geosci. Model Dev., 6, 1871-1888, doi:10.5194/gmd-6-1871-2013, 2013.
Publications Copernicus