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Abstract. In atmospheric models, due to their computational 1  Introduction

time or resource limitations, physical processes have to be

simulated using reduced (i.e. simplified) models. The use of

a reduced model, however, induces errors to the simulatioh? numerical simulations of complicated physical pheno-
results. These errors are referred to as approximation errorénena, one usually has to balance between the model accu-
In this paper, we propose a novel approach to correct theseaCcy and the computation time. Reduction in computation
approximation errors. We model the approximation error astime is typically obtained by using reduced models for some
an additive noise process in the simulation model and emf the functions in the model. The use of reduced models,
ploy the Random Forest (RF) regression algorithm for con-however, result in errors in model output. The errors are re-
structing a computationally low cost predictor for the ap- ferred to as the approximation errors (AE).

proximation error. In this way, the overall simulation prob-  In this paper, we consider the approximation errors caused
lem is decomposed into two separate and Computaﬁona”)py coarse discretization of aerosol size distributions in sec-
efficient simulation problems: solution of the reduced modeltional aerosol models. In sectional models, the continuous
and prediction of the approximation error realisation. The aIO_aerosol particle size distributions are represented with dis-
proach is tested for handling approximation errors due to &rete size sections (e.gVeisenstein et 12007 Jacobson
reduced coarse sectional representation of aerosol size dig001 Rodriguez and Dabdylt2004 Kokkola et al, 2008.
tribution in a cloud droplet formation calculation as well as The accuracy of the description of the size distribution in-
for compensating the uncertainty caused by the aerosol actreases with increasing number of size sections. The compu-
vation parameterization itself. The results show a significant@tional demand of the model, however, is heavily increased
improvement in the accuracy of the simulation compared toWith the number of the sections. Therefore, a compromise
the conventional simulation with a reduced model. The pro-between the model accuracy and the computational time has
posed approach is rather general and extension of it to difto be made to construct a feasible model for simulations of
ferent parameterizations or reduced process models that aRfmospheric scale.

coupled to geoscientific models is a straightforward task. An-  The main mechanism by which atmospheric aerosol par-
other major benefit of this method is that it can be applied toticles affect the climate is by modifying the concentration
physical processes that are dependent on a large number 8f cloud condensation nuclei (CCN) followed by changes

variables making them difficult to be parameterized by tradi-in cloud droplet number concentration (the indirect effect of
tional methods. aerosols). While it is well known that the number of CCN

in the atmosphere has increased, the effect of these addi-
tional CCN on cloud properties is still the largest single
source of uncertainty in the current estimates of the anthro-
pogenic radiative forcingHorster et al.2007). Thus, solving

the cloud activation of the aerosol particles more accurately,
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would reduce the uncertainty in the estimated aerosol indi- One computationally simple and light-weight and recently
rect effect. Current aerosol-climate models include param-widely used function approximation approach is to employ
eterizations for calculating cloud activation of aerosol thatRFs. The RFs are predictive models introduce@iaiman
use the above mentioned sectional approddid(l-Razzak  (2001). A RF model consists of an ensemble of binary tree
and Ghan2002 Nenes and Seinfe]®003. These param- predictors. Each of these tree predictors is trained based on
eterizations introduce uncertainty in CDNC estimation duethe training data.
to highly simplified description of aerosol activation process. The aim of the RF model construction is to get numer-
Beyond this, coarse size resolution of the aerosol size distrious tree models that slightly differ from each other. This is
bution that is used as an input for a cloud activation parame-achieved by introducing randomization in the tree construc-
terization translate to approximation errors in the calculatedtion. The constructed RF models are further used for the
aerosol indirect effect. function output prediction. The prediction of the RF model
Recently, an approach for compensating approximations computed by averaging the predictions of each (almost)
errors in inverse problems was proposed by Kaipio andunbiased tree model in the ensemble. This averaging should
Somersalo Kaipio and Somersal®005. The approach is therefore increase the accuracy of the RF model over a sin-
known as the approximation error approach. This far, thegle tree prediction accuracy. Recently, the RF models have
approach has mainly been applied to so-called soft field tobeen applied to classification and regression problems in-
mography imaging problems that are related to estimation otluding classification of climate zoneBdchtel and Daneke
spatially distributed parameters of partial differential equa-2012), earthquake induced damagé@sg¢famariam and Liu
tions from boundary measurements. In such problems, th010, remote-sensing dat®4l 2005 and disease predic-
approach has been successful, for example, in compensgion (Munro et al, 2006 Yao et al, 2013. In papers by
tion of approximation errors due to coarse finite elementBechtel and Danek€012, Tesfamariam and Lif2010,
discretization Arridge et al, 2006 Nissinen et al.2009, Pal (2005, a comparison between different algorithms were
unknown nuisance parametefdigsinen et al.2009 2011 carried out. Despite its simplicity, the RF was observed to
Kolehmainen et aJ.2011), and the truncation of the compu- perform at least equally well as the more complicated algo-
tational domainl(ehikoinen et al.2007 Kolehmainen eta).  rithms in classification and regression problems.

2009. We employ the RF approach for construction of the pre-
The main idea in the approximation error approach is todictor model for the approximation errors in the simulation
model the error between the accurate and approximate commodel. Here it should be noted that the proposed approach is
putational models as an additive noise process. The realisarot restricted to the RFs only and some other type of models,

tion of the approximation error noise is obviously unknown such as neural networkR¢jas 1996 Haykin, 2009, could
and cannot be computed without solving the accurate modehave been used as well. The training data for the RF algo-
and knowing the unknown parameters. However, given theithm is a set of approximation error realisations between
prior probability density models of all the unknowns, the the accurate and reduced models corresponding to a set of
inverse problem can be marginalized over the unknown aprandom samples of the input parameters that are sampled
proximation error in an approximate way by utilising a Gaus- from the prior probability density models. The computation
sian estimate for the joint probability density of the approxi- of the training data involves solution of the computationally
mation error and the unknown parameters. For a detailed exdemanding accurate model as many times as the number of
planation, se&olehmainen et al(2011). samples. This step, however, can be done as precomputa-
In this paper, we propose a novel approach for handlingtion and needs to be carried out only once. Given the trained
approximation errors in simulation models. The approach isRF model, the accurate model can then be approximated by
an extension of the approximation error approach. Similarlythe sum of the reduced model and the predicted approxima-
as in applications of the approximation error approach to in-tion error in the actual simulations.
verse problems, the discrepancy between the outputs of accu- The proposed approach is evaluated in the case of cloud
rate and reduced models is modelled as an additive approxdroplet number concentration (CDNC) estimation from sec-
imation error noise process in the simulation model. How-tional aerosol particle size distribution using the cloud
ever, whereas in the framework of inverse problems the undroplet formation parameterization bybdul-Razzak and
certainty related to the approximation errors is taken care ofGhan(2002. We consider the approximation errors caused
by marginalization, here we propose to construct a computaby using a coarse sectional representation of the aerosol par-
tionally low-cost predictor model that computes an estimateticle size distributions as well as the error caused by using
for the realisation of the approximation error given in the in- the parameterization of aerosol activation instead of model
put parameters and solution of the reduced model. This wayctually simulating the process of aerosol growth to cloud
the solution of the simulation problem is decomposed intodroplets. The results show that the proposed approach gives
a computationally efficient approximation of solving the re- a significantly improved accuracy over the conventional way
duced computation model and estimating the value of the adef using the reduced model only with the cost of a small in-
ditive approximation error. crease in the computational burden.
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The rest of the paper is organised as follows. The ap-2.2 Simulation of training data for the Random Forest
proximation error approach and the RF models are explained algorithm
and the approach for prediction of approximation errors us-
ing the RF models is proposed in Sect. 2. In Sect. 3, theThe construction of a predictor modglx) requires a set
cloud droplet formation parameterization Bpdul-Razzak  of feasible realisations of the random variab{€g, €;, k =
and Ghar(2002 (ARG) and the air parcel model used inthe 1,..., N}. Firstly, this step involves drawiny random reali-
simulations are briefly reviewed. In Sect. 4, the proposed apsations ofx; from the prior probability density model(x),
proach is applied and evaluated in cloud droplet formationor alternatively, one can utilise set of existing data (e.g. mea-
calculation. The conclusions are given in Sect. 5. sured realisations af) if available. Secondly, one has to
compute realisations, = f(x;) — f(P(xy)) of the approx-
imation error for each of the samples to obtain the train-
ing data{xy, ex,k =1,..., N}. Obviously, this step involves
solving the accurate and computationally demanding model
f(x) N times. However, this computationally demanding
part has to be done only once for the construction of the si-
mulation model 4). This model can then be used to approx-
|imate the accurate modgl(x), for example, within aerosol-
climate models where the computational times are a critical
issue. The outline of the simulation of the training data is
presented in Algorithni.

2 Correction of approximation errors with Random
Forests

2.1 Approximation error model

Let f(x), f:RY - RM denote the numerically conver-
gent but computationally too time consuming computationa
model. Herex € RY denotes the inputs of the function. In-
stead of using the mod¢l(x), one wishes to use a computa-
tionally low cost reduced model

f(®), fRY SRM N<N, F=P@), (1) 23 Random Forests

whereP is typically a model reduction mapping from higher RFs developed bBreiman(200J) are used for classification
dimensional space to a lower dimensional space. Howeve@nd regression. The RF algorithm uses training data to con-
the approximation errors caused by the model reduction castruct an RF model used for predicting a class in which the
often render the simulation results unreliable, or even usegiven input belongs (classification) or the output of a func-

less. tion the input would give (regression). An RF model consist
Using the approximation error modelKgipio and of an ensemble of classification or regression trees. Each tree
Somersalp2005, we write the simulator as in the RF is grown independently of each other and based
on a slightly different training set to avoid overfitting of the
fx)=f@&+ [f(x) — f(g)] model. In particular, each training set is obtained as a random
- subset of the original training set. Further, the reason for con-
= f(x)+e (2) structing an ensemble of tree models, not a single tree model,

is to increase the accuracy and reduce the uncertainty of the
wheree (x) = f(x) — f(¥) represents the approximation er- oyerall prediction. In this paper, the RF models for regression
ror. Notice that model3) is accurate but the exact realisation zre ysed for the construction of the predigtof).
of the approximation error for a given realisation of input | case of regression, the RF model consists of an ensem-
parameters: can only be evaluated by solving the compu- ple of regression tree models. A regression tree model is a se-
tationally demanding accurate modg{x), which we wish  quence of rules that is used for function output prediction
to avoid in the first place. In the present work, our objective wjth given inputs. The sequence of rules forms a binary tree
is to construct a computationally fast predictor model for the strycture and it is evaluated by following the nodes starting

realisation of the approximation error from the uppermost node referred to as the root node. Each
Yo A 3 node rule consists of a pair of input variable index and split
glx)=¢ 3 threshold value. In the node evaluation, the value of the in-

put variable indicated by the index is compared with the split
threshold value. If the input data variable value is less than
the threshold value the left branch of the node is followed. In
other cases, the right branch is followed. The tree structure
f@x)~ f&) +gF) (4) is followed until a node that has no child nodes is reached.
These nodes are referred to as the leaf nodes. The tree model

for a given realisation of the reduced parameterizatiolror output prediction is selected as the output value indicated by
this, we modelx, €) as vector valued random variables and the leaf node. Finally, the output of the RF model is com-
utilise the RF model for the construction of the predictor puted as the average of all the individual tree model outputs.
g(x). For an illustrative example of a regression tree, seeFig.

wheree is the predictor for the approximation errerWith
this model, the simulation of (x) can be approximated in
a computationally efficient form
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T2 < 0.37

numpy

@ root node sklearn.ense
o leaf node
e interior node

input vectors
_train, fx_train), axis=1)

Create a RF
RF = RandomForestRegressor (n_estimators=100, max_features=10, min_samples_split=5)

Fig. 1. An illustrative example of a regression tree.

. Fig. 2. An example code listing for training and evaluating an
As stated above, an ensemble of trees is constructed fromag model in scikit-learn.

the training datdxy, €, }. The samples; ande; are consid-

ered as the inputs and outputs of the function, respectively,

which the RF model to be constructed is approximating. The3 Cloud droplet formation parameterization
training procedure of an RF is carried out as follows. First,

random samples from the training data are selected and ag: ..o o¢ cloud droplets in the atmosphere is a dynam-

sign(te)d to fthelro?tdnode 0]; a r_egtrhession tree. tThypicaIIyB thel(fal process affected by local meteorology and aerosol par-
nhumber of selected samples IS e same as e NUMDET o g acting as cloud condensation nuclei. In the most so-

sam'ples in th'e original training data. The random selection i histicated parameterizations, CDNC is calculated based on

::r?rrle_d .OUtI \tN't.h _repl(;;\ctemetnt and ttherefore the slamtplgs fro erosol particle size distribution and chemical composition,

b N or:gwla d ra'n;Pgl atl_ ase aSre no (r;ecessa:jry s€ e%e torf”t]h ressure, temperature and vertical velocity of air parcel form-
€ selected multiple imes. Second, a random subset of thig g e cloud Abdul-Razzak et 21998 Abdul-Razzak and

input variables is selected and all possible splits of the train- han 200Q 2002 Nenes and Seinfel®003 Fountoukis
ing data samples with respect to these variables are teste nd Nenes2005

The split that minimises mean squared error of the regression . <imulations in this study are conducted using the

. . . . g}\LSA sectional aerosol model developed for atmospheric
the new child nodes according to the selected split rule. Th'smodels Kokkola et al, 2008 Bergman et al.2012. In

splitting is carried out as long as nodes with enough Sample%ALSA aerosol size distribution is divided to different sub-
assigned to them exist. This procedure of training regressiorpanges ,based on the particle size (3-50, 50700, and 700—

tre_es Is repeated un_t|l the preple_termlnate_d_number trees a0 000 nm). The size resolution differs between the sub-
trained. A more detailed description on training an RF model

. : _ ranges depending on how sensitive the aerosol processes are
IS Fre;gnted, for example, in the paperﬂlylman(ﬁ_om)l. . _to particle sizes of given subrange. In this study, the size

_ !N IS paper, we use an open source machine leamingg iqns within subranges have a constant volume ratio be-
library scikit-learrt for Python Pedregosa et al2011) to

. o : tween the adjacent sections. When using the default setup of
implement 'the . RF. In the scikit-learn library, the RF 'used SALSA, it has 10 size sections divided so that there are 3 sec-
for regression is named &andomForestRegressdn this

_ tions in the first subrange, 4 in the second subrange, and 3 in
paper, we stu_dy the effect of three differeRaindomFore- the third subrange. A more detailed description of the model
stRegressotraining parameters on the RF accuracy. Theseis given byKokkola et al.(2008
three parameters are_estlmatorsthe.number 9f trees in the SALSA includes all relevant microphysical processes such
forest,max_featuresthe number of input variables to con-

id hen Tooking for the best solit. and | it as condensation of sulfate and organic carbon, nucleation of
siderwhen looking for the best Spill, antin_samples_spiit ., particles, hydration, and coagulation. However, in this
the minimum number of training samples required to split a

de. F Il the otheRandomForesiR ; study we are interested in the effect of the size resolution
Pho g'f orlta | €o and OX] res legrezsplgr?mef erts, ._on the calculated number of cloud droplets, and the SALSA
the detault values are used. An example code isting fortrainsg ¢4 only to create aerosol size distribution and to calcu-
ing and evaluating the RF with the scikit-learn is given in

late the CDNC using the ARG parameterization. It has to

Fig. 2. be noted that here we refer to CDNC as the cloud droplet
number concentration at the cloud base. The activation pa-
Lversion 0.14.1http://scikit-learn.org/ rameterization byAbdul-Razzak and Gha(2002 does not

Geosci. Model Dev., 6, 20872098 2013 www.geosci-model-dev.net/6/2087/2013/
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Table 1. The numbers and names of the input variables in the ARG parameterizations.

Parameterization input variable name Number of variables  Number of variables  Number of variables
in 4 size sections 7 size sections 70 size sections
parameterization parameterization parameterization

Temperature 1 1 1

Pressure 1 1 1

Vertical velocity 1 1 1

Particle number concentration 8 13 130

Volume concentration of sulphate 8 13 130

Volume concentration of organic carbon 2 4 40

Volume concentration of dust 8 13 130

Total number of variables 29 46 433

take into account CDNC affecting processes within cloud, Table 2. Size section configurations of the cloud droplet formation
e.g. entrainment and as such is not a complete representatigrarameterizations used in simulations.

of CDNC. Also, we are omitting the first subrange as usually
the cloud droplet nucleation in the atmosphere is not affected ~ Total number  Size sections inthe  Size sections in the

by these particles as they are too small to act as cloud con- Of size sections  diameter range diameter range
densation nuclei. For simplicity, in this study we have also N the model 50-700nm 0.7-10um
assumed that aerosol is composed of only one highly hygro- 70 40 30

scopic compound (sulphate), one slightly hygroscopic com- 7 4 3

pound (organic carbon) and one non-hygroscopic compound 4 2 2

(dust).

Beyond evaluating the size resolution effect, we also study

if the RF can be used to minimise the parameterization ertomputes the value of the CDNC for the given inputBy
rors caused by the ARG parameterization itself in the eStimanumerically convergent, it is meant that the output of the
tion of CDNC. For that purpose we use an air parcel model,narameterization do not significantly change if more size
that solves the differential equations describing the aerosogections were added. The input parameter vestazon-
growth to cloud droplets by water uptake in an adiabaticallytains aerosol particle size and composition distributions, ver-
ascending air parcel. The model used has been describegta] velocity, pressures and temperature information. For the
in detail elsewhereKokkola et al, 2003 and it has been names and number of input variables in different parame-
used in several aerosol cloud interaction studies @a@.  terizations see Tablg. In the following computations, the
makkaniemi et a).2003 20132). In the model, the differential  numper of size sections for the representation of the particle
equations are solved using an ordinary differential equatiorsjze distributions is 70, see TateWith this discretization,
solver DLSODE fwww.netlib.org, which solves initial-value  the average simulation time of the accurate model is about
problems for stiff or non-stiff ordinary differential equations .92 ms.
using backward differentiation formulae. The liquid phase |n the parameter vectdr of the reduced modqf(f), the
thermodynamics needed for the vapour pressures on the lichymber of size sections for the aerosol particle size distribu-
uid particle surfaces are calculated with AIM, which is a tions have been significantly reduced. We consider two dif-
chemical equilibrium codeQlegg et al. 1998. The aerosol  ferent levels of model reduction. In the first one, the number
size distribution is represented by the method of moving secxys sjze sections is 7 and in the second one 4, see Pafilee
tions, with 250 sections in this study. In the current study theayerage computation times are about 0.11 and 0.07 ms for the
model is used in its simplest setup, where only the condensay and 4 sections parameterizations, respectively. Thus, when
Fion Of water iS taken intO account W|th0ut Other miCI'OphyS- reducing from 70 Size Sections to7o0r4 Sections the aver-
ical processes. age reductions in computation times are about 89 and 93 %,

respectively.
4 Models, simulations and results

4.2 Construction of the RF predictor model

4.1 Accurate and reduced models
The size of sample sék;} was selected a& = 50000 for

Let f(x) € R denote the numerically convergent computa- the construction of the training data (Algorittih The reali-
tional ARG cloud droplet formation parameterization that sations{x;} of the input parameters were drawn from their

www.geosci-model-dev.net/6/2087/2013/ Geosci. Model Dev., 6, 22888 2013


www.netlib.org

2092

A. Lipponen et al.: Correction of approximation errors with RF

Table 3.The prior probability distribution models used for the cloud Table 4. The notations used for the probability distributions and

droplet formation parameterization inputs. Te\/, andl™ denote
the uniform, Gaussian and gamma distributions, respectively. Thdion.

details of the probability distribution functions are shown in Tahle

their probability density functiond: (k) denotes the Gamma func-

Notation Probability density functiofa(x)

Variable Distribution Unit 1

- p=gr A<x=<b
w I'(1.25,0.75) ms-1 x~Ula.b) { 0, otherwise
p 4(1000Q100000 P L i )
T 1U(240,300) K X~ NG o2) exp(— =9 )
mot1  I'(2.800 cm3 ov2r 20
n1 U (50, 80) nm
o1 N(15,0.125 x~T'k.0) r‘(k)gkxk ‘e p(‘é)
ntot, 2 I'(3,200) cm3
uo U (100,200 nm
e} N(1.5,0.125
ntot.3 I'(1.25,0.75) cm—3
w3 U (500, 1500 nm
03 N(1.5,0.125

prior probability distribution models, which were selected so

that the realisations are plausible representations of their val- 600 I I
ues in the nature. The aerosol particle number distribution 500 ke L | URTPY
n =n(d), whered is the diameter of the particle, was mod- 400
elled as a sum of three log-normal modes representing the = 3

Aitken, accumulation and coarse mode aerosols: 200
100

3
n(d)=>_ni(d) 5) D1 02 03 04 05 0.6 07 0.8 09 L0
i=1 p (Pa) x10°
where each of the modes was modelled by 600 ; ; ; ;
500
ni(d) = ——=%—— exp| - log@/ui?/ (207)|  (6) 400
d\/ 27 (log(o7))? Z 300
200
where theniot; is the total number of particles in mode 100

ando; andyu; the shape and log-scale parameters of mode
The parameters of the prior probability distribution models
used in the generation of the vertical velocity pressurep,
temperaturd’, and the particle number distribution parame- Fig. 3. Histograms of vertical velocity, pressurep and temper-
tern;, o;, n; samples are shown in TabBand the respec- atureT in the sample set used for constructing the approximation
tive probability density functions are shown in TadleThe  error samplesV denotes the number of samples.

histograms of the temperature, pressure and vertical veloc-

ity samples, and the particle number distribution parameters

in the training sample sdix;} are shown in Figs3 and4, Figure5 shows the output values of the accurate paramete-
respectively. The aerosol particle volume size distributionsrization against the output of the approximate parameteriza-
were constructed with the particle number distributions oftion for the set of training samplgs;}. In the top panel, the

the modes and randomly distributed volume fractions of eachreduced model uses 4 size sections for the size distributions
compound. The volume fractions for the sulphate were drawrand in the bottom 7 size sections. The black line shows the
from an uniform distributiori/(0.01, 1) separately for each identity line f (x) = f (¥) corresponding to the case that ac-
mode. Further, the fractions of dust and organic carbon wereurate and reduced models match. The average relative errors
drawn from uniform distributions such that the sum of the in the CDNC values were 20.4 and 54.6 % for the 7 and 4 size
compound fractions was 1. sections parameterizations, respectively. The reason for the

g4() 250 260 270 280 290 300
T (K)
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Fig. 4. Histograms for number concentrations of particlesscale parameteys; and shape parameters for the log-normal modes =
1,2, 3. N denotes the number of samples.

4000
3500

Given the samplebry }, the realisations of the approxima-
3000 tion error were simulated as
7 2500
% 2000

= 1500

{ek=f'(xx) = f (P (xx),k=1,...,N} 7

- where  f'(xp) =log(f (xx))  and  f'(P(x)=
% 50 1000 500 3000 2500 3000 3500 1000 |og (f(P (xk))) It was found that the use of linear or

©) e logarithmic scale for the CDNC in the RF training resulted
w1 - ] in similar root-mean-square errors and bias in the estimates.
B e > i S In some RF models, however, the mean relative error was
[ R R g A T more than ten times higher with the linear scale than with the
Z 100 F R 777777 logarithmic scale. Therefore, we chose to use CDNC with
“‘:E: > i R R R S logarithmic scale in the computations. The histograms of
) 30100 35100 . the approximation errors for both the 7 and 4 size sections
parameterizations are shown in F&.
Finally, the sample setécy, f/(P(xx))} and {e;} were
used as the RF training set inputs and outputs, respectively,

3000

(b)

Fig. 5. Cloud droplet number concentrations (CDNC) computed

with the approximate modef(¥) as functions of CDNCs given by . . .
the accurate modef(x). (a) Approximate parameterization with 4 and the RF models were trained as described in the S&ct.

size sections for the aerosol particle size distributignsApprox- Also here, the addition of logarithms of the coarse parame-

imate parameterization with 7 size sections for the aerosol particld€rization outputs in the training set slightly improved the
size distributions. Black solid lines represent the identity lines. RF model accuracy and was therefore used. Once the RF pre-

dictor g was constructed, the output of the accurate simulator
f(x) was approximated with

lower CDNC with the smaller number of size sections is the/ ¥) exp(log (f (“‘?)> +8 (“‘~C ! (£)> )- ®)
lower maximum supersaturation when using the ARG para-
meterization.

www.geosci-model-dev.net/6/2087/2013/ Geosci. Model Dev., 6, 22888 2013
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8000

The error estimates were computed as

T
|
|
6000 — — — — - - - - - -
|
|
|

€RMSE = iZ(f(xz)—f( ))2

Z 4000 i=1

f@ =exp(log(7 (%)) +2 (. 7 (¥))) ©)

and

B f(xi) — FE)
CMRE = _; fanl (10)

As the construction of an RF model is random, the tests were
repeated 25 times for each AE model to also evaluate the ran-
dom variations in the results. The average RMSE and MRE,
average computation time of the approximation error model,
and the model parameters for both of the approximate param-
eterizationsf (¥) corresponding to 20 different combinations
of RF training parameters( estimatorsmax_featuresand
min_samples_sp)iare given in Tabl& for the parameteriza-
tion with 7 size sections and Taldor the parameterization
with 4 size sections. Complete results tables are given in the
Supplementary material of the paper. The bottom row in both
Tables gives the respective errors between the accurate para-
meterizationf (x) and reduced parameterizatigiix) with-
out approximation error correction. The CDNC values com-
puted with the accurate parameterizatjoix ;) as a function
of the AE corrected CDNC values using the predigarvith
the lowest RMSE error are shown in FigPanel a shows the
case for the reduced model with 4 size sections and panel b
the case with 7 size sections for the particle size distributions.
4.3.1 Compensation of approximation errors due to The result_s show that by using the AE correction with
reduced coarse sectional representation of the RF predictor model, both the RMSE and MRE errors
the aerosol size distribution are significantly decreased. In the case of the reduced pa-
rameterizationf (x) with 7 size sections, the RF training
parameter selections estimators= 400, max_features- 2,
To evaluate the proposed approach, multiple RF predicandmin_samples_split 25 resulted in the overall model in
tor models for the approximation errors correspondingwhich both the RMSE and MRE were the smallest. Here,
to both approximate ARG parameterizations, with 7 andthe approximation error correction decreased the RMSE
4 size sections, were constructed with different RF train-and the MRE to values less than 30 and 50 %, respec-
ing parameters. All possible combinations of parameter setsively, of the RMSE and MRE values of the CDNC com-
{25,50, 100 200 400}, {5, 10, 15, 25}, and{2, 5, 15, 25, 100} puted without the approximation error correction. In the
for n_estimatorsmax_featuresand min_samples_splitre- case of the reduced parameterizatip(¥) with 4 size sec-
spectively, were used. These parameter ranges were selectédns, the lowest RMSE was obtained with the RF train-
based on a test which showed that selecting values outing parameters_estimators= 400, max_features- 2, and
side these ranges either resulted in poor model accuracy anin_samples_split 15. Also here, both the RMSE and
considerably larger computational burden with no signifi- MRE errors were significantly decreased. Notice that the
cant improvement on the model accuracy. To avoid overop-RMSE errors of the 4 size sections parameterization with the
timistic results, the constructed AE models were evaluatecapproximation error correction are smaller than the MSE er-
with a separate validation set of 25000 samples of ARGrors of the uncorrected 7 size sections parameterization. Be-
model inputs. The validation set was sampled similarly as thecause the RF method is asymptotically unbiased, biases are
training set but the samples were not included in the trainingsignificantly reduced. For the 4 size sections case, the ap-
of the RF model. proximative model (Fig5a) has a bias of 260 cmd, while
All predictor models were evaluated using the validation the AE corrected model’'s (Figia) bias is—0.7 cnt3. For
set, and the root-mean-squared error (RMSRyse and  the 7 size sections case, the approximative model and AE
mean relative error (MREJure estimates were computed. corrected model biases are 97 and 0.4 2rmespectively.
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Fig. 6. Histograms of the approximation errarér). N denotes the
number of samplega) Approximate parameterization with 4 size
sections for the aerosol particle size distributidipd.Approximate
parameterization with 7 size sections for the aerosol particle siz
distributions.

4.3 Results
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Table 5. Training parameters and results of the AE correc- Table 6.Training parameters and results of the AE correction in the
tion in the case of 7 size sections parameterization: number oftase of 4 size sections parameterization: number of trees in the RF
trees in the RF modeh_estimatorsthe RF training parameters modeln_estimatorsthe RF training parametensin_samples_split
min_samples_splitand max_featuresthe mean values of root- and max_featuresthe mean values of root-mean-squared errors
mean-squared erroegpse (RMSE) and mean relative errafigre erMse (RMSE) and mean relative erroasgire (MRE), and the av-
(MRE), and the average time used for evaluating the RF model  erage time used for evaluating the RF madel

3 3
0o g 8 9w 0o g 8 @
g 2z ¢ ¥ g s =z 2 B
E 5 & &~ 3 E 5§ & E~ 2
B | ST & & g 2 x 5t 8- @
- £ E ES ;® E o E B 25 B £
400 2 25 41.3 9.3 048 400 2 15 955 235 048
200 2 25 41.4 9.3 0.27 400 5 15 95.7 23. 0.26
400 5 25 41.4 9.3 0.27 200 2 15 959 236 0.26
200 5 25 415 9.3 0.14 200 5 15 96.1 235 0.13
100 2 25 41.8 94 0.14 400 2 25 96.7 23.1 049
100 5 25 41.9 9.4 0.08 100 2 15 96.8 23.7 0.14
50 5 25 42.1 9.4 0.05 100 5 15 96.9 23.7 0.08
50 2 25 42.1 9.4 0.09 200 2 25 97.2 23.2 0.26
400 15 25 42.2 9.4 0.16 100 2 25 973 233 0.14
200 15 25 42.2 9.5 0.08 200 5 25 979 232 0.13
100 15 25 42.4 9.5 0.05 50 5 15 98.2 23.8 0.05
50 15 25 42.8 9.6 0.03 50 2 15 98.4 240 0.08
400 25 25 42.9 9.6 0.14 400 5 25 98.6 231 0.26
200 25 25 43.0 9.6 0.07 400 15 15 98.8 240 0.16
100 25 25 43.2 9.6 0.05 200 15 15 99.2 241 0.08
25 5 25 43.2 9.6 0.03 100 5 25 994 233 0.08
50 25 25 43.4 9.7 0.03 50 5 25 99.6 235 0.05
400 2 15 43.4 9.7 0.48 100 15 15 99.8 242 0.05
25 15 25 435 9.6 0.02 400 2 10 99.8 246 048
400 5 15 43.5 9.7 0.28 200 2 10 100.1 246 0.26
7 size sections parameterization 4 size sections parameterization
without AE correction  138.9 20.4 0.10 without AE correction  341.1 54.6 0.06
The mean of the CDNC values computed with the 70 size The mean of the CDNC values computed with the 70 size
sections parameterization: 574.8Th sections parameterization: 574183,
The standard deviation of the CDNC values computed with the The standard deviation of the CDNC values computed with the 70
70 size sections parameterization: 50915 3. size sections parameterization: 50053,

The results also show that the RF model training pa-sections were about 0.10 and 0.06 ms, respectively. These AE
rameters did not significantly affect the accuracy of the model running times for computing(%) resulted in overall
AE model. The RF training parameter affecting the accu-average runtimes of 0.12—0.58 ms for the 7 size sections and
racy of the model most wawmax_featuresThe randomness 0.08-0.54 ms for the 4 size sections AE corrected parame-
in the RF model training caused only minor variations in terizations. Thus, the reduction in computation times of the
the resulting RF models showing the robustness of the apapproximation error corrected modefgx) is in the range
proach. As an example, in the 7 size sections AE correctedf 37-91 % compared to the run time of the accurate model
model with the RF training parametansestimators= 400, f(x) that was about 0.92 ms. Note that the errors using the
min_samples_split 2, andmax_features- 25, the RMSE  fastest RF predictor models are only slightly larger (less than
and the MRE varied between values 41.2-41.4¢rand 2 and 0.5% in the MRE error in cases of 4 and 7 size sec-
9.23-9.28 %, respectively. tions, respectively) compared to the slowest RF model. By

The average times to simulate the AE models varied be-using the RF models with the fastest running time, one would
tween 0.02 and 0.48 ms in the case of 7 size sections paramstill get the RMSE less than 32 % of the RMSE in the re-
terization and between 0.02 and 0.49 ms in 4 size sections patuced modelsf (¥) with an increment of computation time
rameterization on a standard desktop computer. The averageom 0.10 to 0.12 ms for the 7 size sections model and from
time to simulate the reduced modg(%) with 7 and 4 size  0.06 to 0.08 ms for the 4 sections model. Note that the use
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Fig. 7. Cloud droplet number concentrations (CDNC) computed Fig. 8. Cloud droplet number concentrations (CDNC) computed
with the approximation error corrected parameterizagfqﬁj) as with the the approximate modgl(x) (a) and the approximation
functions of CDNCs given by the accurate parameterizafion;). error corrected parameterizatigt(x) (b) as functions of CDNCs
(a) Reduced parameterizatighx) with 4 size sections for the rep-  given by the air parcel modékx ;). Black solid lines represent the
resentation of the aerosol particle size distributic(}. Reduced identity lines.

parameterizatiorf (¥) with 7 size sections for the representation of

the aerosol particle size distributions. Black solid lines represent the

identity lines.

h(x;) was 452.7 cm3) and the MRE from 36.6 to 12.6 %.
) . .. The biases in the approximative model (F8g) and the AE
of, for example, the RF predictor model with the training ¢ rrected model (Figb) are 132 and 9.1 cnd, respectively.
parameters_estimators= 25, min_samples_splt 15, and  Thege results show that the proposed AE compensation ap-

max_features- 25 resulted in the overall model with only 5-54ch is also capable of compensating the errors due to re-
slightly larger (about 0.3 %) MRE error and 0.46 ms faster yction of the internal numerics of the process model.
running time compared to the RF model with the smallest

MRE error in the case of 7 size sections parameterization.

Notice that the computation time of the error prediction by 5 Conclusions

the RF model is independent of the computation timeg of

or f Thus, the relative time Sa\/ing by the proposed approacfpue to Computational time and resource limitations related

will increase as the computation time gfincreases. to atmospheric models, several physical processes have to be
simulated using reduced models. The use of a reduced model,
4.3.2 Compensation of approximation errors due to however, induces approximation errors to the simulation re-
reduction of process model internal numerics sults. In this study, we presented a novel approach to correct

these approximation errors and applied it to the calculation of
In addition to the coarse sectional representation of thecloud droplet number concentration (CDNC). In the paper,
the aerosol particle distribution as the approximation errorthe approximation errors (in CDNC) caused by coarse sec-
source, also simulations with an air parcel mddal;) asthe  tional representation of the aerosol particle distribution and
accurate model were carried out (see S&ébr the descrip-  the approximative ARG parameterization of aerosol activa-
tion of 2(x ;)). In these simulations, the 7 size sections ARG tion were studied.
parameterization was used as the approximative model. The In our approach, the approximation errors caused by
same training and validation datasets as in the previous AR@nodel reduction are modelled as an additive approximation
parameterization simulations were used and an RF modetrror noise process in the simulation model and the RF al-
with parameters_estimators= 400, min_samples_split gorithm is utilised for construction of a predictor for the re-
2, andmax_features= 25 was trained to predict the approx- alisation of the approximation error for given model input
imation errors. The CDNC values computed with and with- parameters. This way the accurate simulation model can be
out the approximation error correction as functions of CDNC approximated in a computationally fast form by evaluating
values of the air parcel modél(x ;) are shown in Fig8. the reduced model and the prediction of the approximation
With the approximation error correction, the decrease of theerror.
errors was significant, the RMSE decreased from 206.5 to It was found out both in the case of the ARG parameteri-
93.3cnT 2 (the mean of the CDNC values computed with zation and the air parcel model that the RF approach gives
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significantly smaller errors in the CDNC calculation than us- Appendix A

ing the reduced model alone with a small increment in the

computational cost. Also the systematic errors caused by reALGORITHMS

duced model accuracy can be efficiently eliminated. Further

it was noted that the use of CDNC in logarithmic scale in the

RF training may have high impact on the MRE of the final _Algorithm 1: Simulation of training data.

CDNC estimates. In some cases, the MRE was more than ten Inputs: Accurate and approximative modefgx) and f (¥),

times higher if the linear scale for the CDNC was used in the respectively, prior probability distribution modelx) for the

training instead of logarithmic scale. input variablex, model reduction mapping and the number
Another significant result in this study was that if the num-  of samplesV to be used in the precomputation stepstput:

ber of size sections were further decreased from 7 to 4, the Training dataxy, ¢;} for the RF model

RMS errors in the RF corrected CDNC of the 4 sections Lfor i=1.... N .do

model were lower than the errors of the uncorrected 7 sec- 2 Qraw a '.random sampke; from the probability

. - distributions (x) (or use sample from a set of measured
tions model. This shows that the RF method could be useful realisations of)

in reducing the number of size distribution parameters, when 3. Simulate the aclcurate model, i.e. compite;).

aerosol models are developed for simulations of decades or 4.  simulate the approximate model, i.e. Complﬁ@(xi))_

centuries. As the method is in no way limited to sectional ap- 5:  Add a samplé¥;, €;) where#; = P(x;) and
proach, it could be applied for reducing number of modes in ¢, = f(x;) — f(P(x;)) to the training set.
modal models. This type of model reduction has been con- 6: end for
sidered, for example, ihiu et al. (2012.
Here the RF method was employed in the calculation of
CDNC with variables typical to atmospheric models. The Supplementary material related to this article is

method can be easily and efficiently extended to take acy, 5ijape online athttp:/www.geosci-model-dev.net/6/

count more complex aerosol including for example SurfaC62087/2013/gmd-6-2087-2013-supplement.pdf

active Sorjamaa et al2004) or semi-volatile aerosol com-

pounds Romakkaniemi et 812005 by simply adding new

variables to the training data. The method is highly efficient . )

especially in the case of physical processes, which have begfcknowledgementsThe financial support by the Academy of

found to be difficult to parameterize with traditional meth- "iand (project 119270 and Centre of Excellence programmes
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ods due to high dependence of the processes on several P& Eastern Finland are gratefully acknowledged.

rameters. For example in our simplest case in the calculation

of cloud droplet formation, the number of parameters wasggjted hy: A. Kerkweg

29 and thus finding for example analytic formulas for cor-

rections are difficult. A possible topic of future studies is to

test the proposed approach with some variant of the RF algoReferences

rithm, such as the weighted REljen et al.2004. Further,

the proposed approach is rather general and extension of

to different physical simulation models is a straightforward

task.
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