Supplement 2
Contents:
Part 1: Baye’s Theorem
Part 2: Multi-Source Data Set Optimization Scheme

1.1 Metropolis-Hasting (M-H) Algorithm:

1.2 Matlab Code for the M-H Algorithm:

1.3 Results

Part 3: Single Data Set Optimization Scheme

2.1 Metropolis-Hasting (M-H) Algorithm:

2.2 Matlab Code for the M-H Algorithm:

2.3 Results
Part 4: Comparisons Between Two Optimization Schemes
This appendix show: 
(1) Description of Bayes’ Theorem

(2) the optimization scheme of M-H algorithm using multi-source data set (Part 1) and single data set (Part 2); 

(2) The Matlab Code of the M-H algorithm using different assimilation scheme;

(3) The differences between the two different assimilation schemes;

The code can be used and tested freely. I would be great appreciations if you can cited our paper when using the code.
Zhu GF, Li X, Su YH, et al., 2014. Simultaneous parameterization of %% the two-source evapotranspiration model by Bayesian approach: application to spring maize in an arid region of northwest China. Geosci. Model Dev. Discuss., 7, 741–775.

PART 1: The Bayes’ Theorem 
A general description of the Bayesian probabilistic inversion is given by Bayes’ theorem (Box and Tiao, 1973) in a form of:  
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in which 
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 is the prior probability density function (PDF) representing prior knowledge about parameter 
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; 
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is the likelihood function, which defines the fit to the data for particular parameter set and also reflects the influence of the data on parameter identification; 
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is the probability of observations 
[image: image6.wmf]O

, and 
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is the posterior PDF of parameter 
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. Thus, the inverse problem can be related to the forward problem through a set of measurements and prior knowledge about the probability of the parameters. 
PART 2: Multi-Source Data Set Optimization Scheme
2.1 Metropolis-Hasting (M-H) Algorithm:

In practice, except for situations where 
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 have very simple forms, it is not always possible to draw samples directly from
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. In such cases, the Markov Chain Monte Carlo (MCMC) method can be used to investigate the parameter space in the search for the posterior distribution (Geman et al., 1993; Gelfand and Smith, 1990). The basic idea for the MCMC sampling is to design a Markov chain with 
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as the targeted stationary distribution. Once the chain has simulated for sufficiently long period samples in the chain will follow the stationary distribution, then one can collect the samples from the simulation and calculate various statistics associated with the posterior PDF from them. The Metropolis-Hastings (M-H) algorithm (Metropolis et al., 1953; Hastings, 1970) is a type of MCMC technique that approximately obtains samples from the posterior distribution. A simple computational implementation of the M-H algorithm consists of the following steps:

Step 1: 

Chose an arbitrary initial point 
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 in the parameter space.

Setp 2:

Propose a candidate point 
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according to a proposal distribution
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; In this study, the candidate parameter is generated by a uniform proposal distribution as:
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where
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specify the prior range of the parameter vector 
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; 
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is a random number uniformly distributed between -0.5 and +0.5; 
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is a value controlling the proposing step size and was set to be 5. 
Step 3: 

     3.1 Calculate 
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 for a given parameter vector:
For a given parameter vector 
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, we can simulate half-hourly λET (W m-2) and daily E (mm day-1) using equations (1) and (9) in the manuscript, which is labeled as
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 (i=1 and 2), respectively. Form previous analysis, we can calculate 
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     where 
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 is observed values of the ith dataset [observed half-hourly λET (W m-2) and daily E (mm day-1), respectively] at time 
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; 
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 is the number of observations of the ith dataset. 
3.2 Calculate the likelihood function 
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     where 
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 is the number of dataset (
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 in this study) ;  

Step 4: 

 Calculate the acceptance probability:
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     The ratio of likelihood is calculated under the candidate value of parameter to  that calculated under preciously accepted value of parameter. 

Step 5: 

      Generate a random number 
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form the uniform distribution
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       If 
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Step 6: 

       Repeat steps 2 and 5 until enough samples are obtained.

The flowchart of the M-H algorithm was illustrated in Fig. B1.
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Fig. B1 Flowchart representing the basic scheme of the M-H algorithm.

2.2 Matlab Code for the M-H Algorithm:

%% Matlab Code of two source evapotranspiration model

function [LET,Emd]=SW(rstmin,k1,k2,k3,b1,b2,flag,F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac)
%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Author: 
Gaofeng Zhu; Xin Li et al

%% Date: 

March 17, 2014 

%% Address:
Lanzhou University

%%

%% If there is a need for using the code, please cite the paper of the %% authors as:

%% Zhu GF, Li X, Su YH, et al., 2014. Simultaneous parameterization of %% the two-source evapotranspiration model by Bayesian approach: 
%% application to spring maize in an arid region of northwest China. Geosci. %% Model Dev. Discuss., 7, 741–775
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Descriptions: 
%%%%%% Output variables　

%% LET


simulated half-hourly evapotranspiration in [w m-2]
%% Emd


simulated daily soil evaporation in [mm d-1]

%%%%%% parameter in resistance sub-model
%% rstmin 

minimal stomatal resistance in [s m-1]
%% k1           parameter in eqn. 16 in the manuscript with unit [w m-2]

%% k2 


unit [oc]

%% k3           unit [kPa-1]

%% b1           parameter in soil surface resistance in [s m-1]

%% b2           parameter in soil surface resistance in [s m-1]

%%%%%% input driving variables 

%% F4 


see eqn. (19) in the manuscript 

%% G 


soil heat flux in [W m-2]

%% Rn           net solar radiation in [W m-2]

%% S            short-wave solar radiation in [W m-2] (Rs in eqn.16)
%% LAI 


leaf area index in [m2 m-2]
%% Ta 


air temperature in reference height in [oc]

%% rho

    air density in [kg m-3]

%% D 


air water vapor pressure deficit in [kPa]

%% SWC_2       soil water content at the surface layer [m3 m-3]

%% delta       slope of the saturation vapor pressure versus temperature
curve [kPa K-1]

%% gamma       psychrometric constant [kPa K-1]
%% raa 

aerodynamic resistances in [s m-1]

%% ras

aerodynamic resistances in [s m-1]

%% rac

aerodynamic resistances in [s m-1]
%% Code of S-W model   %%
%% calculate rss in [s m-1] 
thetas=0.45;   % saturated water content at the 20 cm depth in [m3 m-3];
rss=exp(b1-b2*SWC_2./thetas);
%% calculated rsc in [s m-1]
F1=(eps+S)*(1055+k1)./(1055*(S+k1));  % S:short wave radiation W m-2
Tamin=0;
Tamax=40;
tao=(Tamax-k2)/(k2-Tamin);
numerator=(Ta-Tamin).*(Tamax-Ta).^tao;
denominator=(k2-Tamin).*(Tamax-k2).^tao;
F2=numerator./denominator;
F3=1-k3*D;
rsc=rstmin./(2*LAI.*F1.*F2.*F3.*F4);
%% S-W model
Cp=1.013;  % specific heat capacity of the dry air in kJ/kg/K;
Ra=(delta+gamma).*raa;
Rs=(delta+gamma).*ras+gamma.*rss;
Rc=(delta+gamma).*rac+gamma.*rsc;
Cs=1./(1+Rs.*Ra./(Rc.*(Rs+Ra)));
Cc=1./(1+Rc.*Ra./(Rs.*(Rc+Ra)));
KA=.41;
Rns=Rn.*exp(-KA.*LAI);
A=Rn-G;
As=Rns-G;
ETs=(delta.*A+(rho.*Cp.*D-delta.*ras.*(A-As))./(raa+ras))./(delta+gamma.*(1+rss./(raa+ras)));
ETc=(delta.*A+(rho.*Cp.*D-delta.*rac.*As)./(raa+rac))./(delta+gamma.*(1+rsc./(raa+rac)));
LE=Cs.*ETs;
LT=Cc.*ETc;
LET=LE+LT;                         % total half-hourly ET in [W m-2] 
% air water vapor pressure deficit at the canopy height in [kPa] 

D0=D+(delta.*A-(delta+gamma).*LET).*raa./(rho.*Cp); 
% half-hourly soil evaporation in [W m-2]
E=(delta.*As+rho.*Cp.*D0./ras)./(delta+gamma.*(1+rss./ras)); 
% half-hourly canopy transpiration in [W m-2]
T=(delta.*(A-As)+rho.*Cp.*D0./rac)./(delta+gamma.*(1+rsc./rac));
%% convert units of evaporation and transpiration from [W m-2] to [mm m-2]
lambda=2500.78-2.3601*Ta;    
Em=E./lambda;
Tm=T./lambda;
%% calculate the daily accumulative soil evaporation and transpiration %% in [mm day-1]
for i=1:length(E)/48
    Emd(i,1)=sum(Em((i-1)*48+1:i*48));
    Tmd(i,1)=sum(Tm((i-1)*48+1:i*48));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End of the S-W model
% Main Code 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 

%% The main code used to calculate the posterior distribution of parameters

%% Authors
: 

Gaofeng Zhu, Xin Li

%% Date   
:     
March 17, 2014
%% Address
:   
Lanzhou University

%% Purpose
: 

using the M-H algorithm to explore the posterior

%%


distribution   parameters in the S-W model

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clc
clear
format long
% load meteorological and biological driving data 
load data
% ET Rn Gs_1  WS_3m  Ta_3m  RH_3m  Press  Ms_2cm Ms_10cm LAI h S
% Variables
ET  
=  data(:,1);           
% w m-2
Rn   
=  data(:,2);          
% w m-2
G    
=  data(:,3);          
% w m-2
u    
=  data(:,4);          
% m s-1
Ta   
=  data(:,5);          
% oC
RH   
=  data(:,6)/100;      
% humidity 
P    
=  data(:,7)/10;        
% kPa
SWC_2
=  data(:,8)/100;      
% m3 m-3
SWC_r
=  data(:,9)/100;      
% m3 m-3
LAI  
=  data(:,10);          
% m2 m-2;
hc   
=  data(:,11)/100;      
% canopy height in m
z    
=  3;                      
% reference height in m
S    
=  data(:,12);       
 
% solar radiation
load Edaily





% measured soil evaporation in mm day-1

% calculate wind speed at canopy height
z0  =   0.13*hc;            
% roughness length
d   =   0.67*hc;            
% zero plane displacement
uh  =   u.*log((hc-d)./z0)./log((z-d)./z0);
% Calculate meteorological variables
lambda=2500.78-2.3601*Ta;    % the latent heat of evaporation in J kg-1 
% saturated vapor pressure in kPa
es=.6108*exp(17.27*Ta./(Ta+237.3));
% slope of pressure to temperature
delta=4098*es./(Ta+237.3).^2;
% air density
Rd=287/1000;                    % the gas constant in kJ/kg/K
ea=es.*RH;





 % actual vapor pressure in kPa
D=es-ea;                         % air vapor pressure deficit in kPa
% air density in kg m-3
rho=P./(Rd*(Ta+273.14).*(1+.378*ea./P));
Cp=1.013;               %specific heat capacity of the dry air in kJ/kg/K;
epsilong=.622;         %the ratio of water vapor and air         
gamma=Cp*P./(lambda*epsilong);     % psychrometric constant (kPa K-1)
% calculate raa using equations from Shuttleworth and Wallace (1985) 

k=0.41;                         
% von Karman constant
% z0h=0.1*z0;                  % roughness length to the heat flux in [m];
n=2.5;                          
% parameter in SW model
% LAI >4 
raa_inf=log((z-d)./z0)./(k*k*(u+eps)).*(log((z-d)./(hc-d))+hc./(n*(hc-d)).*(exp(n*(1-(d+z0)./hc))-1)); 
% for bare surface
z0s=0.01;
ras0=log(z/z0s).*log((d+z0)/z0s)./(k*k*(u+eps));
raa_bare=(log(z/z0s).*log(z/z0s))./(k*k*(u+eps))-ras0;     
% 
raa=.25*LAI.*raa_inf+.25*(4-LAI).*raa_bare;
% calculate ras
% LAI >4 
ras_inf=log((z-d)./z0)./(k*k*(u+eps)).*hc./(n*(hc-d)).*(exp(n)-exp(n*(1-(d+z0)./hc)));
% for bare surface
z0s=0.01;
ras_bare=log(z/z0s).*log((d+z0)/z0s)./(k*k*(u+eps));
%  

ras=.25*LAI.*ras_inf+.25*(4-LAI).*ras_bare;
% calculate rac
% method 1
rb=50;
rac=rb./(2*LAI);
% method 2 

% w=6/100;                                    % leaf width in m
% rb=(100/n)*(w./u)*(1-exp(-n/2));
% rac=rb./(2*LAI);
% calcualte F4 in canopy resistance model
thetas=.45;                                    % saturated SWC
thetacr=0.75*thetas;
thetaw=.11;
for i=1:length(SWC_r)
    if SWC_r(i)>thetacr
        F4(i,1)=1;
    elseif SWC_r(i)>thetaw
        F4(i,1)=(SWC_r(i)-thetaw)./(thetacr-thetaw);
    else
        F4(i,1)=eps;
    end
end
% Calculate observed daily ET
ETo=ET./lambda;
for i=1:length(ET)/48
    ETdaily(i,1)=sum(ETo((i-1)*48+1:i*48,1));    
end
%%%%%%%%%%%%%%%%%%%%  M-H iteration procedure
% Parameter ranges of rsmin,k1,k2,k3,b1,b2,
cmin(1)=0;cmin(2)=0;cmin(3)=30;cmin(4)=0;cmin(5)=4;cmin(6)=0;
cmax(1)=80;cmax(2)=500;cmax(3)=40;cmax(4)=.1;cmax(5)=15;cmax(6)=8;
% initialize parameter
for i=1:length(cmin)
    co(i)=cmin(i)+rand.*(cmax(i)-cmin(i));     % Initial paramerters    
end
[LETo,Emdo]=SW(co(1),co(2),co(3),co(4),co(5),co(6),[],F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac);
e1=LETo-ET;
e2=Emdo-Edaily;
sigma1=sqrt(sum(e1.^2)/length(LETo));
sigma2=sqrt(sum(e2.^2)/length(Emdo));
logL1=-length(LETo)*log(sigma1)-sum(e1.^2/(2*sigma1^2));
logL2=-length(Emdo)*log(sigma2)-sum(e2.^2/(2*sigma2^2));
logL=logL1+logL2;
nsim=30000;









% iteration length
parameter=zeros(nsim,length(cmin));
sigma=zeros(nsim,2);
% begian to iterate
for i=1:nsim  
% generate new parameter vector
rr=-.5+rand(1,length(cmin));
    cnew=co+rr.*(cmax-cmin)/5;
    % simulate using new parameter vector    [LETo,Emdo]=SW(cnew(1),cnew(2),cnew(3),cnew(4),cnew(5),cnew(6),[],F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac);
    % calcualte model error for different data set
    e1=LETo-ET;
    e2=Emdo-Edaily;
    % estimate sigma of different data set
    sigma1=sqrt(sum(e1.^2)/length(LETo));             % Eqn.24
    sigma2=sqrt(sum(e2.^2)/length(Emdo));             % Eqn.24
    % calclaute the log-likelihood of different data set 
    logL1=-length(LETo)*log(sigma1)-sum(e1.^2)/(2*sigma1^2);            
    logL2=-length(Emdo)*log(sigma2)-sum(e2.^2)/(2*sigma2^2);            
    % calcualte the total log-likelihood  
    logLnew=logL1+logL2;                                  % Eqn.23
    % draw a rand number form uniform distribution  
    r=log(rand);                    
    if r<=logLnew-logL
        parameter(i,:)=cnew; % save parameter vales used to draw statistics
        logL=logLnew;
        co=cnew;
    else 
        parameter(i,:)=co;   % save parameter vales used to draw statistics
    end
    sigma(i,:)=[sigma1,sigma2];         % save sigma
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End of the Main program
The proposing efficiency of 
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 affects the efficiency of the algorithm, and hence should be properly designed to ensure a moderate sample acceptance rate. A rate of 23% is sometimes an optimal acceptance rate (Robert and Rosenthal, 1998). In our test study, the accepting rate using the uniform proposal function is generally low (~10%). Based on the test run, we constructed a normal distribution 
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Using this proposal distribution, the general acceptance rate can achieve between 20-50%. The Matlab code was shown as following:
function y=Generate(co,transT,eigV,cmin,cmax)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Purpose : using normal distribution to generate candidate
% Author  : Gaofeng Zhu, Xin Li, et al.,
% Date    : March 17, 2014
% the original code was developed by Xu et al., 2007;
% Please cited as:
% Xu T., White L., Hui DF., Luo YQ. Global Biogeochemical Cycle, 20, GB2007, 
% dio:10.109/2005GB002468, 2006
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
co=co';
while(true) 
% 6:  the number of parameter 
cT=randn(6,1).*[sqrt(eigV(1,1));sqrt(eigV(2,2));sqrt(eigV(3,3));sqrt(eigV(4,4));sqrt(eigV(5,5));sqrt(eigV(6,6))];
%generate a new configuration based on the estimated covariance matrix
c_new =transT*(transT'*co+cT);
 if c_new(1)>cmin(1)&c_new(1)<cmax(1)...
        &c_new(2)>cmin(2)&c_new(2)<cmax(2)...
        &c_new(3)>cmin(3)&c_new(3)<cmax(3)...
        &c_new(4)>cmin(4)&c_new(4)<cmax(4)...
        &c_new(5)>cmin(5)&c_new(5)<cmax(5)...
        &c_new(6)>cmin(6)&c_new(6)<cmax(6)...
        break
    end
end
y=c_new';
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End of the sub-model

% Main Code 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 

%% The main code used to calculate the posterior distribution of parameters

%% Authors: Gaofeng Zhu, Xin Li

%% Date:     March 17, 2014
%% Adress:   Lanzhou University

%% Purpose: using the M-H algorithm to explore the posterior distribution 

%%           parameters in the S-W model

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clc
clear
format long
% load meteorological and biological driving data 
load data
% ET Rn Gs_1  WS_3m  Ta_3m  RH_3m  Press  Ms_2cm Ms_10cm LAI h S 
% Variables
ET  
=  data(:,1);           
% w m-2
Rn   
=  data(:,2);          
% w m-2
G    
=  data(:,3);          
% w m-2
u    
=  data(:,4);          
% m s-1
Ta   
=  data(:,5);          
% oC
RH   
=  data(:,6)/100;      
% humidity 
P    
=  data(:,7)/10;        
% kPa
SWC_2
=  data(:,8)/100;      
% m3 m-3
SWC_r
=  data(:,9)/100;      
% m3 m-3
LAI  
=  data(:,10);          
% m2 m-2;
hc   
=  data(:,11)/100;      
% canopy height in m
z    
=  3;                      
% reference height in m
S    
=  data(:,12);       
 
% solar radiation
load Edaily





% measured soil evaporation in mm day-1

% calculate wind speed at canopy height
z0  =   0.13*hc;            
% roughness length
d   =   0.67*hc;            
% zero plane displacement
uh  =   u.*log((hc-d)./z0)./log((z-d)./z0);
% Calculate meteorological variables
lambda=2500.78-2.3601*Ta;    % the latent heat of evaporation in J kg-1 
% saturated vapor pressure in kPa
es=.6108*exp(17.27*Ta./(Ta+237.3));
% slope of pressure to temperature
delta=4098*es./(Ta+237.3).^2;
% air density
Rd=287/1000;                    % the gas constant in kJ/kg/K
ea=es.*RH;





 % actual vapor pressure in kPa
D=es-ea;                         % air vapor pressure deficit in kPa
% air density in kg m-3
rho=P./(Rd*(Ta+273.14).*(1+.378*ea./P));
Cp=1.013;               %specific heat capacity of the dry air in kJ/kg/K;
epsilong=.622;         %the ratio of water vapor and air         
gamma=Cp*P./(lambda*epsilong);     % psychrometric constant (kPa K-1)
% calculate raa using equations from Shuttleworth and Wallace (1985) 

k=0.41;                         
% von Karman constant
% z0h=0.1*z0;                  % roughness length to the heat flux in [m];
n=2.5;                          
% parameter in SW model
% LAI >4 
raa_inf=log((z-d)./z0)./(k*k*(u+eps)).*(log((z-d)./(hc-d))+hc./(n*(hc-d)).*(exp(n*(1-(d+z0)./hc))-1)); 
% for bare surface
z0s=0.01;
ras0=log(z/z0s).*log((d+z0)/z0s)./(k*k*(u+eps));
raa_bare=(log(z/z0s).*log(z/z0s))./(k*k*(u+eps))-ras0;     
% 
raa=.25*LAI.*raa_inf+.25*(4-LAI).*raa_bare;
% calculate ras
% LAI >4 
ras_inf=log((z-d)./z0)./(k*k*(u+eps)).*hc./(n*(hc-d)).*(exp(n)-exp(n*(1-(d+z0)./hc)));
% for bare surface
z0s=0.01;
ras_bare=log(z/z0s).*log((d+z0)/z0s)./(k*k*(u+eps));
%  

ras=.25*LAI.*ras_inf+.25*(4-LAI).*ras_bare;
% calculate rac
% method 1
rb=50;
rac=rb./(2*LAI);
% method 2 

% w=6/100;                                    % leaf width in m
% rb=(100/n)*(w./u)*(1-exp(-n/2));
% rac=rb./(2*LAI);
% calcualte F4 in canopy resistance model
thetas=.45;                                    % saturated SWC
thetacr=0.75*thetas;
thetaw=.11;
for i=1:length(SWC_r)
    if SWC_r(i)>thetacr
        F4(i,1)=1;
    elseif SWC_r(i)>thetaw
        F4(i,1)=(SWC_r(i)-thetaw)./(thetacr-thetaw);
    else
        F4(i,1)=eps;
    end
end
% Calculate observed daily ET
ETo=ET./lambda;
for i=1:length(ET)/48
    ETdaily(i,1)=sum(ETo((i-1)*48+1:i*48,1));    
end
%%%%%%%%%%%%%%%%%%%%  M-H iteration procedure

% Prior estimate of covariance matrix of parameters 
% it was obtained from previous uniform run
cov_c=[0.9645
-0.0219
-0.3973
-0.0015
-0.0047
0.0314

-0.0219
0.0247
-0.0852
0.0003
0.0171
0.0322

-0.3973
-0.0852
5.3166
-0.0076
-0.0279
-0.0387

-0.0015
0.0003
-0.0076
0.0003
0.0025
0.0065

-0.0047
0.0171
-0.0279
0.0025
0.2524
0.6315

0.0314
0.0322
-0.0387
0.0065
0.6315
1.6916];

[transT, eigV]=eig(cov_c);
% Parameter ranges of rsmin,k1,k2,k3,b1,b2,
cmin(1)=0;cmin(2)=0;cmin(3)=30;cmin(4)=0;cmin(5)=4;cmin(6)=0;
cmax(1)=80;cmax(2)=500;cmax(3)=40;cmax(4)=.1;cmax(5)=15;cmax(6)=8;
% initialize parameter
for i=1:length(cmin)
    co(i)=cmin(i)+rand.*(cmax(i)-cmin(i));     % Initial paramerters    
end
[LETo,Emdo]=SW(co(1),co(2),co(3),co(4),co(5),co(6),[],F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac);
e1=LETo-ET;
e2=Emdo-Edaily;
sigma1=sqrt(sum(e1.^2)/length(LETo));
sigma2=sqrt(sum(e2.^2)/length(Emdo));
logL1=-length(LETo)*log(sigma1)-sum(e1.^2/(2*sigma1^2));
logL2=-length(Emdo)*log(sigma2)-sum(e2.^2/(2*sigma2^2));
logL=logL1+logL2;
nsim=30000;









% iteration length
parameter=zeros(nsim,length(cmin));
sigma=zeros(nsim,2);
% begian to iterate
for i=1:nsim  
    % generate new parameter vector from normal destribution
    cnew= Generate(co,transT,eigV,cmin,cmax);
    % simulate using new parameter vector    [LETo,Emdo]=SW(cnew(1),cnew(2),cnew(3),cnew(4),cnew(5),cnew(6),[],F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac);
    % calcualte model error for different data set
    e1=LETo-ET;
    e2=Emdo-Edaily;
    % estimate sigma of different data set
    sigma1=sqrt(sum(e1.^2)/length(LETo));             % Eqn.24
    sigma2=sqrt(sum(e2.^2)/length(Emdo));             % Eqn.24
    % calclaute the log-likelihood of different data set 
    logL1=-length(LETo)*log(sigma1)-sum(e1.^2)/(2*sigma1^2);            
    logL2=-length(Emdo)*log(sigma2)-sum(e2.^2)/(2*sigma2^2);            
    % calcualte the total log-likelihood  
    logLnew=logL1+logL2;                                  % Eqn.23
    % draw a rand number form uniform distribution  
    r=log(rand);                    
    if r<=logLnew-logL
        parameter(i,:)=cnew; % save parameter vales used to draw statistics
        logL=logLnew;
        co=cnew;
    else 
        parameter(i,:)=co;   % save parameter vales used to draw statistics

    end
    sigma(i,:)=[sigma1,sigma2];         % save sigma

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End of the main program
2.3 Results of Multi-source Assimilation Scheme
The results of 10,000 evolution of MCMC using multi-source data are shown in Fig. B2
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Fig. B2 The evolution of MCMC chain using the normal distribution proposal (left) and histograms of sample from posterior distribution (right) by using multi-source dataset

The comparison between observed and simulated half-hourly evapotranspiration (W m-2) were illustrated in Fig. B3. The simulated values were obtained using the median values of the posterior parameter distribution.
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Fig. B3 Comparison between observed and simulated half-hourly evapotranspiration (W m-2). The regression lion between observed and simulated values was: y=0.84x+0.18 (R2=0.83)

PART 3: Single Data Set Optimization Scheme 
3.1 M-H Algorithm:
To investigate how the estimation accuracy and parameters vary, a test case was also run by using one single data set (the EC-measured half-hourly ET; W m-2). In this case, the likelihood function was set as:
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where 
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Ot

is EC-observed half-hourly ET (W m-2); 
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ft

is simulated ET values  (W m-2; Eqn.1 in the manuscript); 
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et

is the model error (W m-2); and 
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 is the standard deviation on each data point. For a given parameter vector, 
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 is estimated as (Braswell et al., 2005):
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3.2 Matlab Code 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 

%% The main code used to calculate the posterior distribution of parameters

%% This scheme using only the EC-measured half-hourly ET data

%% Authors: Gaofeng Zhu, Xin Li

%% Date:     March 17, 2014
%% Adress:   Lanzhou University

%% Purpose: using the M-H algorithm to explore the posterior distribution 

%%           parameters in the S-W model

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clc
clear
format long
load data
% ET  Rn Gs_1  WS_3m  Ta_3m  RH_3m  P  Ms_2cm  Ms_10cm LAI h S 
% Variables
ET  =  data(:,1);           
% w m-2
Rn   =  data(:,2);          
% w m-2
G    =  data(:,3);          
% w m-2
u    =  data(:,4);          
% m s-1
Ta   =  data(:,5);          
% oC
RH   =  data(:,6)/100;      
% humidity 
P    =  data(:,7)/10;       
% kPa
SWC_2=  data(:,8)/100;      
% m3 m-3
SWC_r=  data(:,9)/100;      
% m3 m-3
LAI  =  data(:,10);         
% m2 m-2;
hc   =  data(:,11)/100;    
% canopy height in m
z    =  3;                 
 
% reference height in m
S    =  data(:,12);        
% solar radiation
load Edaily




% measured soil evaporation in mm day-1

% calculate wind speed at canopy height
z0  =   0.13*hc;            
% roughness length
d   =   0.67*hc;            
% zero plane displacement
uh  =   u.*log((hc-d)./z0)./log((z-d)./z0);
% Calculate meteorological variables
lambda=2500.78-2.3601*Ta;     
% saturated vapour pressure in kPa
es=.6108*exp(17.27*Ta./(Ta+237.3));
% slope of pressure to temperature
delta=4098*es./(Ta+237.3).^2;
%air density
Rd=287/1000;                    % the gas constant in kJ/kg/K
ea=es.*RH;
D=es-ea;
rho=P./(Rd*(Ta+273.14).*(1+.378*ea./P));
%
Cp=1.013;                %specific heat capacity of the dry air in kJ/kg/K;
%the ratio between the mplecular weight of water vapor and air
epsilong=.622;         
gamma=Cp*P./(lambda*epsilong);
%% calculate raa
k=0.41;                        
% von Karman constant
% z0h=0.1*z0;                 
% roughness length to the heat flux in [m];
n=2.5;                         
% parameter in SW model
% LAI >4 
raa_inf=log((z-d)./z0)./(k*k*(u+eps)).*(log((z-d)./(hc-d))+hc./(n*(hc-d)).*(exp(n*(1-(d+z0)./hc))-1)); 
% for bare surface
z0s=0.01;
ras0=log(z/z0s).*log((d+z0)/z0s)./(k*k*(u+eps));
raa_bare=(log(z/z0s).*log(z/z0s))./(k*k*(u+eps))-ras0;  % bare surface
% 
raa=.25*LAI.*raa_inf+.25*(4-LAI).*raa_bare;
%% calculate ras
% LAI >4 
ras_inf=log((z-d)./z0)./(k*k*(u+eps)).*hc./(n*(hc-d)).*(exp(n)-exp(n*(1-(d+z0)./hc)));
% for bare surface
z0s=0.01;
ras_bare=log(z/z0s).*log((d+z0)/z0s)./(k*k*(u+eps));
ras=.25*LAI.*ras_inf+.25*(4-LAI).*ras_bare;
% calculate rac
% method 1
rb=50;
rac=rb./(2*LAI);
% w=6/100;                            
% leaf width in m
% rb=(100/n)*(w./u)*(1-exp(-n/2));
% rac=rb./(2*LAI);
% calcualte F4 in canopy resistance model
thetas=.45;                         
% saturated SWC
thetacr=0.75*thetas;
thetaw=.11;
for i=1:length(SWC_r)
    if SWC_r(i)>thetacr
        F4(i,1)=1;
    elseif SWC_r(i)>thetaw
        F4(i,1)=(SWC_r(i)-thetaw)./(thetacr-thetaw);
    else
        F4(i,1)=eps;
    end
end
% Calculate observed daily ET, E and T
ETo=ET./lambda;
for i=1:length(ET)/48
    ETdaily(i,1)=sum(ETo((i-1)*48+1:i*48,1));
    Edaily(i,1)=ETdaily(i,1)*FracE(i,1);
    Tdaily(i,1)=ETdaily(i,1)*FracT(i,1);
end 
%%%%%%%%%%%%%%%%%%%%  M-H iteration procedure
% Prior estimate of covariance matrix of parameters 
% it was obtained from test uniform run, which is similar to that used 
% in Part 1

%
cov_c=[2.649    -11.1951    0.4698  -0.011  -0.0843 0.5416
-11.1951    12139.2934  -80.9997    0.3606  11.5584 23.4091
0.4698  -80.9997    22.3938 -0.0033 0.3244  1.6035
-0.011  0.3606  -0.0033 0.0006  0.0007  -0.0004
-0.0843 11.5584 0.3244  0.0007  0.576   1.3829
0.5416  23.4091 1.6035  -0.0004 1.3829  4.4452];
[transT, eigV]=eig(cov_c);
% Parameter ranges of rsmin,k1,k2,k3,b1,b2,
cmin(1)=0;cmin(2)=0;cmin(3)=20;cmin(4)=0;cmin(5)=4;cmin(6)=0;
cmax(1)=80;cmax(2)=500;cmax(3)=40;cmax(4)=.1;cmax(5)=15;cmax(6)=8;
% initialize parameter
for i=1:length(cmin)
    co(i)=cmin(i)+rand.*(cmax(i)-cmin(i));     % Initial paramerters    
end
[LETo,Emdo]=SW(co(1),co(2),co(3),co(4),co(5),co(6),[],F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac);
% only ET data set was used here, that is different form Part 1
e1=LETo-ET;
sigma1=sqrt(sum(e1.^2)/length(LETo));
logL=-length(LETo)*log(sigma1)-sum(e1.^2/(2*sigma1^2));
nsim=10000;                                     % iteration length
parameter=zeros(nsim,length(cmin));
sigma=zeros(nsim,2);
% begian to iterate
for i=1:nsim  
    % generate new parameter vector from normal destribution
    cnew= Generate(co,transT,eigV,cmin,cmax);
    % simulate using new parameter vector    
    [LETo,Emdo]=SW(cnew(1),cnew(2),cnew(3),cnew(4),cnew(5),cnew(6),[],F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac);
    % calcualte model error for ET data set
    e1=LETo-ET;
    % estimate sigma of ET data set
    sigma1=sqrt(sum(e1.^2)/length(LETo));             % Eqn.24
    % calclaute the log-likelihood 
    logLnew=-length(LETo)*log(sigma1)-sum(e1.^2)/(2*sigma1^2);           
    % draw a rand number form uniform distribution  
    r=log(rand);                    
    if r<=logLnew-logL
        parameter(i,:)=cnew; % save parameter vales used to draw statistics
        logL=logLnew;
        co=cnew;
    else 
        parameter(i,:)=co;   % save parameter vales used to draw statistics
    end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End of the Main program
3.3 Results 

The results of 10,000 evolution of MCMC using single data are shown in Fig. B4 (left). Comparing with multi-source assimilation scheme, we can see that the posterior distribution of soil resistance parameter (b1 and b2) varied wider.[image: image54.png]
Fig. B4 The evolution of MCMC chain using the normal distribution proposal (left) and histograms of sample from posterior distribution (right) by using single dataset.

The slope (0.85) of the regression line between observed and simulated half-hourly ET for single data set assimilation scheme is slightly lower than that for multi-source data set assimilation scheme (0.86). Thus, we can conformed that that the multi-source data set assimilation scheme is more effective than the single data set scheme. 
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Fig. B5 Comparison between observed and simulated half-hourly evapotranspiration (W m-2). The regression lion between observed and simulated values was: y=0.83x-1.65 (R2=0.75)

PART 4: Comparisons Between Different Assimilation Schemes

4.1 Posterior distributions of parameter for different assimilation schemes  

For Scheme 1 (simultaneously assimilate all data sets), 
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 tended to span the entire prior range (Fig. B7b). Comparing with the two assimilation schemes, important differences occurred in estimates of the posterior distribution of parameters related to the soil surface resistance (
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Fig. B6 Uncertainty reductions of parameters using different assimilation schemes

Table B1 The correlation coefficient, derived form the posterior distribution of parameters using different assimilation schemes. 
	rSTmin
	k1
	k2
	k3
	b1
	b2
	

	1
	-0.004
	-0.01
	0.02
	0.01
	0.004
	rSTmin

	
	1
	0.05
	-0.04
	-0.02
	0.06
	k1

	
	
	1
	-0.04
	-0.07
	0.07
	k2

	EC data Only
	1
	0.05
	-0.04
	k3

	rSTmin
	1
	
	
	1
	0.02
	b1

	k1
	-0.13
	1
	
	
	1
	b2

	k2
	-0.13
	0.06
	1
	
	
	

	k3
	-0.15
	0.02
	0.01
	1
	
	

	b1
	-0.09
	0.05
	0.04
	0.02
	1
	

	b2
	0.32
	0.02
	0.05
	-0.03
	0.84
	1

	
	rSTmin
	k1
	k2
	k3
	b1
	b2


* the upper triangular matrix for Scheme 1; the lower triangular matrix for Scheme 2
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Fig. B6 Histograms of samples from the posterior distributions of the parameters. The dashed vertical lines indicate mean parameter values. (a) Simultaneously assimilate all data sets, (b) EC-measured λET data only

4.2 Comparisons of model performance for different assimilation schemes  

Having parameterized the S-W model by different assimilation schemes as described above, we ran the model to simulate the half-hourly 
[image: image84.wmf]λ

ET

(equation 1) and 
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(equation 9) values (W m-2). The daily estimations of evapotranspiration (ET; mm d-1) and soil evaporation (
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; mm d-1) were obtained by summing up the half-hourly simulated values. The statistical analysis of observed versus estimated values of water vapor fluxes at different time-scales for different assimilation schemes were summarized in Table B2. Overall, the simulations (half-hourly 
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 and daily soil evaporation) of the S-W model optimized by using all data sets simultaneously (Scheme 1) were comparable to the measurements (see Fig. 6 in the Manuscript). For example, the slope of regressive equation between the measured and modeled half-hourly 
[image: image88.wmf]λ

ET

values for Scheme 1 was 0.84, with MBE of 24.2 W m-2, IA of 0.93 and EF of 0.74. A relatively good agreement between measured and estimated daily soil evaporation (E) was also obtained. The slope of regression equation was 1.01, with MBE of –0.01 mm day-1, IA of 0.94 and EF of 0.76. When only EC-measured data were used (Scheme 2), the performances of the S-W model optimized by Scheme 2 on simulations of half-hourly 
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were not significantly different from that optimized by Scheme 1 (Fig. B7). The regression equation between the measured 
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 and the estimated 
[image: image91.wmf]λ

ET

from the S-W model optimized by Scheme 2 was 0.83, with MBE of 30.5 W m-2, IA of 0.67 and EF of 0.13. However, the S-W model optimized by Scheme 2 significantly underestimated the soil evaporation (E). The slope of regression equation between the measured and the estimated E was 0.59, with MBE of 0.11 mm day-1, IA of 0.67 and EF of 0.13. Thus, we can not ensure the S-W model properly partition the total ET into its different components using only the half-hourly 
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 data, even thought the simulated values was in good agreement with measurements.   

The fluctuation of measured and estimated daily ET and E by the two different assimilation schemes was illustrated in Fig. B8. For both assimilation schemes, the simulated daily ET generally fluctuated tightly with the measured values with relative narrow uncertainties (97% posterior predication intervals). Also, we can observed that the 97% posterior prediction interval of soil evaporation for Scheme 1 was narrower than that for Scheme 2 (Fig. B8). Thus, we thought that the soil resistance in the S-W model was properly parameterized for the spring maize by the method with the multiple data sets simultaneously assimilated.
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Fig. B7 Relationship between measured and estimated by Scheme 1 (a) evapotranspiration (
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; W m-2), (b) daily soil evaporation (E; mm d-1).
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Fig. B8 Seasonal variation in daily evapotranspiration (ET; mm d-1) and soil evaporation (E; mm day-1) measured by the EC system and modeled by the S-W model during the study period in Daman Oasis. Gap in the time series is caused either by the absence of flux measurements or missing ancillary data. (a) Simultaneously assimilate all data sets, (b) EC-measured λET data only.

Table B2 Statistical analysis of measured and estimated values of half-hourly evapotranspiration (λET; W m-2), daily soil evaporation (E; mm d-1), and daily evapotranspiration(ET; mm d-1) by different assimilation schemes for the spring maize in arid desert oasis during the study period.

	
	n
	Regressive equation
	R2
	Mean measured values 
	Mean simulated values
	RMSE
	MBE
	IA
	EF

	Scheme 1

	λET (W m-2)
	3578
	λETmodeled=0.84λETmeasured+0.18
	0.83
	161.4
	137.2
	80.7
	24.2
	0.93
	0.74

	E (mm d-1)
	56
	Emodeled=1.01Emeasured +0.01
	0.82
	0.26
	0.28
	0.05
	-0.01
	0.94
	0.76

	ET (mm d-1)
	95
	ETmodeled=0.83ETmeasured +0.19
	0.83
	2.02
	1.88
	0.32
	0.14
	0.94
	0.79

	Scheme 2

	λET (W m-2)
	3578
	λETmodeled=0.83λETmeasured-1.65 
	0.75
	161.4
	142.4
	89.1
	30.5
	0.90
	0.70

	E (mm d-1)
	56
	λETmodeled=0.59λETmeasured+0.01
	0.66
	0.26
	0.16
	0.12
	0.11
	0.67
	0.13

	ET (mm d-1)
	95
	λETmodeled=0.89λETmeasured+0.15
	0.85
	2.02
	1.94
	0.12
	0.07
	0.99
	0.97


n=the sample number; R2=the determination coefficient; RMSE=root mean square error; MBE=mean bias error between measured and modeled values; IA= index of agreement; ET= model efficiency. These statistical parameters are calculated using formulas given by Legates and McCabe (1999) and Poblete-Echeverria and Ortega-Farias (2009).
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