Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Geosci. Model Dev., 8, 2079-2094, 2015
http://www.geosci-model-dev.net/8/2079/2015/
doi:10.5194/gmd-8-2079-2015
© Author(s) 2015. This work is distributed
under the Creative Commons Attribution 3.0 License.
Methods for assessment of models
16 Jul 2015
14C-age tracers in global ocean circulation models
W. Koeve, H. Wagner, P. Kähler, and A. Oschlies GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany
Abstract. The natural abundance of 14C in total CO2 dissolved in seawater (DIC) is a property applied to evaluate the water age structure and circulation in the ocean and in ocean models. In this study we use three different representations of the global ocean circulation augmented with a suite of idealised tracers to study the potential and limitations of using natural 14C to determine water age, which is the time elapsed since a body of water has been in contact with the atmosphere. We find that, globally, bulk 14C-age is dominated by two equally important components, one associated with ageing, i.e. the time component of circulation, and one associated with a "preformed 14C-age". The latter quantity exists because of the slow and incomplete atmosphere–ocean equilibration of 14C particularly in high latitudes where many water masses form. In the ocean's interior, preformed 14C-age behaves like a passive tracer. The relative contribution of the preformed component to bulk 14C-age varies regionally within a given model, but also between models. Regional variability in the Atlantic Ocean is associated with the mixing of waters with very different end members of preformed 14C-age. Here, variations in the preformed component over space and time mask the circulation component to an extent that its patterns are not detectable from bulk 14C-age. Between models, the variability of preformed 14C-age can also be considerable (factor of 2), related to the combination of physical model parameters, which influence circulation dynamics or gas exchange. The preformed component was found to be very sensitive to gas exchange and moderately sensitive to ice cover. In our model evaluation, the choice of the gas-exchange constant from within the currently accepted range of uncertainty had such a strong influence on preformed and bulk 14C-age that if model evaluation would be based on bulk 14C-age, it could easily impair the evaluation and tuning of a model's circulation on global and regional scales. Based on the results of this study, we propose that considering preformed 14C-age is critical for a correct assessment of circulation in ocean models.

Citation: Koeve, W., Wagner, H., Kähler, P., and Oschlies, A.: 14C-age tracers in global ocean circulation models, Geosci. Model Dev., 8, 2079-2094, doi:10.5194/gmd-8-2079-2015, 2015.
Publications Copernicus
Download
Short summary
The natural abundance of 14C in CO2 dissolved in seawater is often used to evaluate circulation and age in the ocean and in ocean models. We study limitations of using natural 14C to determine the time elapsed since water had contact with the atmosphere. We find that, globally, bulk 14C age is dominated by two equally important components, (1) the time component of circulation and (2) the “preformed 14C-age”. Considering preformed 14C-age is critical for an assessment of circulation in models.
The natural abundance of 14C in CO2 dissolved in seawater is often used to evaluate circulation...
Share