Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Geosci. Model Dev., 9, 3199-3211, 2016
http://www.geosci-model-dev.net/9/3199/2016/
doi:10.5194/gmd-9-3199-2016
© Author(s) 2016. This work is distributed
under the Creative Commons Attribution 3.0 License.
Development and technical paper
19 Sep 2016
Bit Grooming: statistically accurate precision-preserving quantization with compression, evaluated in the netCDF Operators (NCO, v4.4.8+)
Charles S. Zender Departments of Earth System Science and Computer Science, University of California, Irvine, Irvine, CA 92697-3100, USA
Abstract. Geoscientific models and measurements generate false precision (scientifically meaningless data bits) that wastes storage space. False precision can mislead (by implying noise is signal) and be scientifically pointless, especially for measurements. By contrast, lossy compression can be both economical (save space) and heuristic (clarify data limitations) without compromising the scientific integrity of data. Data quantization can thus be appropriate regardless of whether space limitations are a concern. We introduce, implement, and characterize a new lossy compression scheme suitable for IEEE floating-point data. Our new Bit Grooming algorithm alternately shaves (to zero) and sets (to one) the least significant bits of consecutive values to preserve a desired precision. This is a symmetric, two-sided variant of an algorithm sometimes called Bit Shaving that quantizes values solely by zeroing bits. Our variation eliminates the artificial low bias produced by always zeroing bits, and makes Bit Grooming more suitable for arrays and multi-dimensional fields whose mean statistics are important.

Bit Grooming relies on standard lossless compression to achieve the actual reduction in storage space, so we tested Bit Grooming by applying the DEFLATE compression algorithm to bit-groomed and full-precision climate data stored in netCDF3, netCDF4, HDF4, and HDF5 formats. Bit Grooming reduces the storage space required by initially uncompressed and compressed climate data by 25–80 and 5–65 %, respectively, for single-precision values (the most common case for climate data) quantized to retain 1–5 decimal digits of precision. The potential reduction is greater for double-precision datasets. When used aggressively (i.e., preserving only 1–2 digits), Bit Grooming produces storage reductions comparable to other quantization techniques such as Linear Packing. Unlike Linear Packing, whose guaranteed precision rapidly degrades within the relatively narrow dynamic range of values that it can compress, Bit Grooming guarantees the specified precision throughout the full floating-point range. Data quantization by Bit Grooming is irreversible (i.e., lossy) yet transparent, meaning that no extra processing is required by data users/readers. Hence Bit Grooming can easily reduce data storage volume without sacrificing scientific precision or imposing extra burdens on users.


Citation: Zender, C. S.: Bit Grooming: statistically accurate precision-preserving quantization with compression, evaluated in the netCDF Operators (NCO, v4.4.8+), Geosci. Model Dev., 9, 3199-3211, doi:10.5194/gmd-9-3199-2016, 2016.
Publications Copernicus
Download
Short summary
We introduce Bit Grooming, a lossy compression algorithm that removes the bloat due to false precision, those bits and bytes beyond the meaningful precision of the data. Bit Grooming is statistically unbiased, applies to all floating-point numbers, and is easy to use. Bit Grooming reduces data storage requirements by 25–80 %. Unlike its best-known competitor Linear Packing, Bit Grooming imposes no software overhead on users, and guarantees its precision throughout the whole floating-point range.
We introduce Bit Grooming, a lossy compression algorithm that removes the bloat due to false...
Share