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Abstract. Due to the proliferation of geophysical models,

particularly climate models, the increasing resolution of their

spatiotemporal estimates of Earth system processes, and the

desire to easily share results with collaborators, there is a

genuine need for tools to manage, aggregate, visualize, and

share data sets. We present a new, web-based software tool

– the Carbon Data Explorer – that provides these capabili-

ties for gridded geophysical data sets. While originally devel-

oped for visualizing carbon flux, this tool can accommodate

any time-varying, spatially explicit scientific data set, par-

ticularly NASA Earth system science level III products. In

addition, the tool’s open-source licensing and web presence

facilitate distributed scientific visualization, comparison with

other data sets and uncertainty estimates, and data publishing

and distribution.

1 Introduction

Today’s scientific enterprise must consider the challenges

and opportunities associated with the growing scale of sci-

entific observations, the need for scalable analyses, and the

benefits and obligations of sharing scientific outputs. In cli-

mate models, in particular, a wealth of observations can be

generated or collected but rich, collaborative insight requires

additional frameworks and software tools. Hence, there is a

renewed emphasis in the Earth system sciences on tools and

best practices for the documentation and sharing of analyses,

metadata generation (e.g., Earth System Documentation, ES-

DOC), and scientific provenance (e.g., The Kepler Project;

Altintas et al., 2004).

In this paper, we describe a new, web-based framework for

managing, analyzing, and collaboratively visualizing Earth

system science data sets: the Carbon Data Explorer (http:

//spatial.mtri.org/flux-client/), version 0.2.3. Although the

tool’s intended use is for carbon science data sets (e.g., re-

gional carbon flux, global carbon concentration), the Car-

bon Data Explorer is compatible with any time-varying, spa-

tially explicit Earth system data set or model output (e.g.,

land surface temperature, evapotranspiration, aerosol optical

thickness). We present the tool as a prototype system that ad-

dresses the challenges of increasing scientific data volumes,

the need for online analysis, and the desire to share results

with collaborators.

Commensurate with the growth of computing power, geo-

physical models are producing data with increasingly fine

spatial and/or temporal resolution (Nativi et al., 2015). Con-

sidering the spatial and temporal dimensions within a data

set simultaneously can be demanding both on computational

resources and on a scientist’s ability to manage and visualize

results. As a conceptual aid, a spatiotemporal data set con-

sisting of only one parameter of interest can be visualized

as a three-dimensional data cube (Fig. 1), a representation

commonly used in scientific computing (Alder and Hostetler,

2015). The three-dimensional data cube metaphor should not

be taken to mean that visualizations of the data cube are nec-

essarily 3-D. Rather, the minimum three dimensions of the

data cube include the two axes of a Cartesian coordinate sys-

tem and an additional axis for time. The data cube repre-

sentation has also gained traction in recent scientific visual-

ization tools; UV-CDAT (Santos et al., 2013) and Panoply

(Schmunk, 2015) are two examples.
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Figure 1. A three-dimensional data cube in which spatial data of

two dimensions (e.g., latitude and longitude) are combined with a

third dimension of time. In this view, a horizontal slice perpendicu-

lar to the time (t) axis corresponds to a geographic map while a line

parallel to the time (t) axis represents a time series.

The Carbon Data Explorer also adopts the data cube as a

functional interface for high-volume spatiotemporal data. A

map view of a single point in time can be visualized as slicing

the data cube perpendicular to the time (T ) axis and paral-

lel to the geographic (X–Y ) plane. Conversely, a time series

display at one point in space (one pair of geographic coordi-

nates) can be visualized as a narrow threading along the time

axis and perpendicular to the X–Y plane. For multivariate

data we must begin to construct and think in terms of higher-

dimensional data hypercubes. The Carbon Data Explorer is

agnostic as to the type of data contained in data cubes and

can simultaneously accommodate any number of variables.

While data cubes work well for storing scientific data of-

fline, web browsers and web applications are designed to

work largely with plain text documents (interpreted variously

as HTML, XML, JavaScript, or other documents). Non-text

formats can be downloaded directly from an online directory

or through File Transfer Protocol (FTP). Indeed, many sci-

entists, unable to procure or unaware of a more sophisticated

solution, provide large collections of outputs directly through

FTP – essentially a networked folder available to the public.

Indexing, searching, or manipulating data must then be done

offline.

As an alternative, open application programming interface

(API) standards such as the Open Geospatial Consortium

(OGC) Web Map Service (WMS) allow two computers –

a web browser and a remote web server – to communicate

about data through an agreed-upon protocol (Blower et al.,

2013). WMS, as an example, allows web applications to find

tiled map images such as those that form the background of

modern, interactive web maps like Google Maps. The Open-

source Project for a Network Data Access Protocol (OPeN-

DAP) is another protocol that describes how hierarchical data

files (HDFs) and Network Common Data Form (NetCDF)

files, among other file types, are stored and accessed (Cornil-

lon et al., 2003).

Thus, dissemination of scientific data on the web typi-

cally requires a metadata-driven API or resource descriptor

framework (RDF); these are implemented as a kind of text-

based communication protocol that describes (to a computer)

where binary data can be found and how they can be ac-

cessed. This enables web applications to ultimately retrieve

and display data in formats that are not native to the web.

However, these APIs incur considerable performance costs

when online analysis of data sets is required or when rep-

resentations are generated dynamically from incoming, real-

time data streams (e.g., Sun et al., 2012; Alder and Hostetler,

2015).

The Carbon Data Explorer solves this problem by in-

troducing a new API for text-based representations of data

cubes, thereby enabling easy integration with and high per-

formance in browser-based web applications while also pro-

viding capabilities for dynamic querying, aggregation, dif-

ferencing, and anomaly calculations. This text-based repre-

sentation is not only compatible with web browsers, it allows

for the data to be manipulated directly in the website, provid-

ing asynchronous rapid filtering and aggregation. Only the

OGC Web Coverage Service (WCS), a protocol also based

in a data cube metaphor, allows for this level of interaction

and online analysis of data (OGC, 2016). However, in our ex-

perience, stand-alone WCS implementations are usually un-

documented or the documentation is relegated to the WCS

standard.

The adoption of web APIs for sharing data is further ev-

idence of the scientific community’s desire to share results

with a wider audience. In addition, the ubiquity of social me-

dia is bringing online conversations about science, albeit in-

formal, and there are even emerging social networks dedi-

cated to scientific discourse and exchange (e.g., Research-

Gate, Academia.edu). This unprecedented interconnectiv-

ity is also motivated by best practices in collaborative sci-

ence. The next phase of the Climate Model Intercomparison

Project, CMIP6, will for the first time allow “anyone at any

time [to] download model data for analysis” (Meehl et al.,

2014). As part of CMIP5, the Earth System Grid Federa-

tion (ESGF) provides a unified gateway to scientific data sets

hosted anywhere in the world. Thus, the ability to share and

compare model results should motivate the further develop-

ment of web-compatible scientific analyses.

In response to this need, the Carbon Data Explorer allows

data providers to share scientific data sets, analyses, and vi-

sualizations directly on the web. A data provider might be a

modeler, the principal investigator of an interdisciplinary re-

search team, or a technician or information technology (IT)

professional embedded in a research team. NASA estimates

that these scientists and model developers spend more than

60 % of their time preparing model inputs and model inter-

comparisons (as cited by Rood and Edwards, 2014). The Car-

bon Data Explorer was designed specifically to enable cli-
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mate modeling outputs to be brought online, visualized, and

compared.

In its capacity as a data management and data access web

server, the Carbon Data Explorer is similar to the THREDDS

Data Server (TDS); its analytical capabilities make it similar

to Ferret-THREDDS. The Carbon Data Explorer expands on

both by providing an integrated front-end for visualization

and analysis. While the THREDDS Client Catalog requires

data to be registered with XML descriptors, the Carbon Data

Explorer Python API has a user-friendly command-line inter-

face that allows for faster, repeatable, one-time registration of

data without the need to open a text editor and write XML.

In data interchange, it also substitutes bulky XML for light-

weight and more human-readable JavaScript Object Notation

(JSON). In addition, it eschews the vulnerability-prone Java

environment and Tomcat web server for a light-weight, non-

blocking web server in Node.js that can be hidden behind a

proxy server such as Apache. This design choice trades off

the protocol interoperability of TDS, which was not identi-

fied as a requirement by our user community, for the ease

of development and deployment of web services with newer,

JavaScript-based technologies on the server.

The scientific data sets supported by the Carbon Data Ex-

plorer include any gridded or non-gridded time-varying, spa-

tially explicit data that can be decomposed into one variable

at a time. The canonical example of a supported data set is

any NASA level III scientific data product, defined as “vari-

ables mapped on uniform space–time grid scales” (NASA,

2010). These geophysical variables are usually derived from

satellites (e.g., OCO-2) or models, reanalysis data sets and

global or regional Earth system models. Many scientific data

sets, particularly level III products, are already stored as bi-

nary (flat) files or in complex, hierarchical data structures

(e.g., NetCDF or HDF) that were designed to accommodate

data cubes (Blower et al., 2013).

The Carbon Data Explorer shares similar aims with tech-

nologies such as NASA’s World Wind virtual globe, Gio-

vanni, and Mirador. Compared with World Wind, the Car-

bon Data Explorer provides access to analytical capabili-

ties that would be awkward or impossible to reproduce in

a virtual globe. Also, unlike World Wind, it requires neither

a stand-alone installation nor a dependency library such as

Java and runs in any web browser. While Mirador allows

users to download spatially explicit scientific data sets from

NASA missions, it has no analytical or visualization capa-

bilities. The Carbon Data Explorer most closely resembles

Giovanni in that both are web-based, map-centered viewers.

While Giovanni provides more sophisticated analytical ca-

pabilities, the Carbon Data Explorer is designed to deliver

results faster and allows for greater customization of the vi-

sualization and the querying of measurement values within

the web client. In sum, the Carbon Data Explorer is intended

for more rapid examination and comparison of climate model

outputs by the modelers themselves.

In common with the Earth System Grid Federation

(Williams et al., 2009), the Carbon Data Explorer aims to

provide a common environment for the access to and analy-

sis and visualization of Earth system science data sets. The

ability to quickly load spatially explicit scientific data in a

web browser allows for the online querying and comparison

of measurement values at specific locations across data sets

and the rapid, online filtering and aggregation of measure-

ment data. These features are not currently available in Gio-

vanni and alternative data management frameworks and web

servers, such as TDS – particularly those that provide only

rasterized data representations, such as WMS – are not ca-

pable of delivering this level of analysis or speed of interac-

tivity. We expect that these and other features of the Carbon

Data Explorer make it a useful contribution to the emerg-

ing frameworks for data analysis and intercomparison. The

remainder of the paper discusses these and other technical

details and describes the full suite of features available.

2 Technical description

2.1 Data sources

In the development and evaluation of the tool, we relied

heavily on some reference data sets exemplary of those we

intend to support. These included a 1-degree-by-1-degree

carbon flux estimate at 3 h time steps from the NASA

Carnegie Ames Stanford Approach (CASA) model run with

Global Fire Emissions Databaset (GFED) input data and 1-

degree-by-1-degree carbon concentration (XCO2
) data at 6-

day time steps modeled by the Carnegie Institution for Sci-

ence’s Department of Global Ecology at Stanford University

(http://dge.stanford.edu/labs/michalaklab/CO2DAAD/). The

CASA–GFED model outputs included monthly uncertainty

estimates; the XCO2
data were gridded by kriging from bias-

corrected XCO2
retrievals.

2.2 Implementation

The Carbon Data Explorer has three main components: a

Python API for data management, a web server API, and

a client-side JavaScript web application (Fig. 2). From a

data provider’s perspective, data enter a pipeline from cre-

ation to visualization on the web beginning with the Python

API, which transforms and stores the data in a database. The

data are then automatically available on the web (or a local

area network) through the server API and can be viewed and

shared through the web application. This suite of software

could be run on a single computer or separately on multiple

computers, each running any UNIX-like operating system

(Mac OS X or a GNU/Linux system). The suite is designed

to be installed on the data provider’s (modeler’s) network,

with the server API optionally facing the public web.

The Python programming language (version 2.7) was cho-

sen as the framework for data management, manipulation,
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Figure 2. A unified modeling language (UML) deployment diagram for the Carbon Data Explorer (CDE), illustrating the configuration and

connections between the components as currently deployed.

and storage due to its high-level language design, wide adop-

tion in the scientific community, and available open-source

libraries. In particular, as many scientific products are stored

as HDF or early Matlab files, Python provides fast and ro-

bust support for reading scientific data products through the

NumPy (Van Der Walt et al., 2011) and SciPy (Jones et al.,

2015) libraries. We also expect that Python provides an en-

vironment that many data providers are already familiar with

or can learn easily should they need to extend the data man-

agement API to support new or customized data sets.

The web server and web client are both implemented in

JavaScript. This was a strategic but also practical decision.

JavaScript is fast and expressive. It is also the de facto lan-

guage of the web; the only language that is natively sup-

ported by every modern web browser (Crockford, 2008).

While JavaScript is not widely used for scientific computing,

no experience with the language is needed to use the Car-

bon Data Explorer. We selected Node.js (http://nodejs.org/)

as the framework for running a JavaScript server because

it provides event-driven request handling, which, like mul-

tithreading, can significantly speed up server response time

for most web applications (Tilkov and Vinoski, 2010).

Performance testing of the Carbon Data Explorer was con-

ducted using Apache JMeter. For each of the requests listed

in Table 1, 10 identical, repeated queries were sent to the

server over 30 s. Tests were done sequentially and were per-

formed three times with several hours to several days be-

tween the runs to ensure general results.

2.3 Data management and storage

Open data APIs for science capitalize on storing and shar-

ing text-based metadata associated with scientific data that

are stored in a binary or hierarchical format. We took this a

step further and designed a data model that is text-only; that

is, the format of the data both on-disk and when transmitted

over the web is plain text. Specifically, the data are stored and

transmitted as JSON documents. These JSON documents are

stored in a MongoDB database instance, which handles in-

dexing and retrieval of plain-text representations.

MongoDB is one of several document-oriented databases

capable of storing semi-structured data as key-value pairs. As

the goal was to get the data on the web, we chose MongoDB

for its transparent, text-based storage. Alternatives such as

Apache Hadoop and Cassandra, while offering performance

advantages, do not provide a clear pathway for rendering

binary files as text. These alternatives may faithfully and

rapidly operate on chunks of the data but would require that

input binary files be split and transformed into some kind

of operational format for handling in a map-reduce frame-

work. As no obvious intermediate format was known at the

time of development, we opted for a format that most closely

resembled the output representation – the native, text-based

representation required for the web browser – as the inter-

mediate format to be stored and operated on in the database.

This design choice trades off performance for flexibility and

the operational demands of bringing data in binary files onto

the web.

Array databases such as PostGIS, a spatial extension to

the relational database management system (RDBMS) Post-
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Table 1. Results of load testing in Apache JMeter; network speeds are in seconds to request completion. The off-network tests were performed

over a wireless internet connection; on-network tests were performed with a wired, direct network connection to the server.

Mean return speed, s (n = 30)

Request Data extent and resolution Off-network On-network

Grid structurea North America, 1-by-1 degrees 0.17 0.03

Grid structureb World, 1-by-1 degrees 0.44 0.08

Gridded X–Y datac North America, 1-by-1 degrees 0.14 0.02

Gridded X–Y datad World, 1-by-1 degrees 0.34 0.12

Temporal aggregation, 40 X–Y gridse North America, 1-by-1 degrees 0.49 0.36

Temporal aggregation, 40 X–Y gridsf World, 1-by-1 degrees 2.90 2.31

Time series at X–Y pointg North America, 1-by-1 degrees 0.10 0.06

Time series at X–Y pointh World, 1-by-1 degrees 0.75 0.62

Time series for region, 684 cellsi North America, 1-by-1 degrees 0.12 0.08

Time series for region, 684 cellsj World, 1-by-1 degrees 0.79 0.72

Request URIs: a /api/scenarios/casa_gfed_2004/grid.json; b /api/scenarios/r2_xco2_kriged/grid.json;
c /api/scenarios/casa_gfed_2004/xy.json?time=2004-05-01T03:00;
d /api/scenarios/r2_xco2_kriged/xy.json?time=2009-06-15T00:00;
e /api/scenarios/casa_gfed_2004/xy.json?start=2004-05-01T03:00&end=2004-05-06T03:00

&aggregate=positive;
f /api/scenarios/r2_xco2_kriged/xy.json?start=2009-06-01T00:00&end=2010-02-01T00:00

&aggregate=positive;
g /api/scenarios/casa_gfed_2004/t.json?coords=POINT(-50.5+69.5)&start=2004-05-01T03:00

&end=2004-05-02T03:00;
h /api/scenarios/r2_xco2_kriged/t.json?coords=POINT(-50.5+69.5)&start=2009-06-15T00:00

&end=2009-08-05T00:00;
i /api/scenarios/casa_gfed_2004/t.json?start=2004-05-01T03:00&end=2004-05-02T03:00

&interval=hourly&geom=POLYGON((-97+46,-101+37,-93+35,-89+42,-97+46));
j /api/scenarios/r2_xco2_kriged/t.json?start=2009-06-15T00:00&end=2009-08-05T00:00

&geom=POLYGON((-97+46,-101+37,-93+35,-89+42,-97+46))

greSQL, are another alternative to MongoDB that we consid-

ered. The use of an array database would have satisfied the

need for an intermediate format – in this case, array stores

– but for the purposes of enabling in-client manipulation of

the data (e.g., querying measurement values, changing the

stretch) this approach would have required the transforma-

tion of requested data to another format, likely text. Based

on the authors’ experience with PostGIS, there were also

no clear performance advantages to array databases. Thus,

a document-oriented database like MongoDB allows the la-

tency associated with preparing scientific data for the web to

be pushed offline, during initial registration and insertion of

the data to the database. In addition, MongoDB features an

aggregation pipeline, which allows us to make sophisticated

queries such as net carbon flux over the last 16 days. The

web server API, which facilitates connections to the Mon-

goDB instance, contains libraries that enable further sophis-

tication with queries, applying fast arithmetic operations for

queries such as the difference between carbon concentration

(in ppm) today and this day last year.

Users can shuttle scientific data into and out of the Mon-

goDB instance by directly interacting with the Carbon Data

Explorer Python API classes or by using a set of accompa-

nying command line tools designed to ease workflow. Com-

mand line tools are available for querying database contents

as well as for loading, renaming, and removing data sets from

the database. When loading a data set, its metadata must be

specified either via command line argument or via an accom-

panying JSON file. Examples of required metadata parame-

ters include column identifiers, grid resolution, units, starting

timestamp, and time step length. These metadata parameters

inform the correct methods for transforming and querying

the data for use within the web server API. The metadata

also encode population summary statistics, which are calcu-

lated by the Python API during insertion to MongoDB, to aid

in visualization (e.g., calculating a stretch).

The transformation of data from binary or hierarchical flat

files to a database representation is facilitated by two Python

classes, models and mediators, which are loosely based on

the transformation interface described by Bulka (2001). The

Model class is a data model that describes what a scientific

data set looks like; i.e., whether it is a time series of gridded

maps or a covariance matrix, for instance. The Mediator class

describes how a given Model should be read from and the

data it contains translated to a database representation. Some

basic Mediator and Model classes are provided in the Python

API. It is expected that data providers with a particular output

format can easily create new Model and Mediator subclasses

to seamlessly read and write data to and from the MongoDB

database and the files in which their data are currently stored.

Transforming heterogeneous data to a uniform structure is

a typically onerous task. In developing the interface for stor-

ing data in MongoDB, we aimed for a flexible system pred-

icated on sensible defaults. The Model class of the Python
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API defines how measurement values can be read from any

file interface available in Python. This flexibility was also

driven by the historical development of related software sys-

tems. For instance, we discovered that Matlab has changed

the format of its saved binary output files over the years from

a proprietary data structure to one that is compatible with

HDF5 (MathWorks, 2015). We selected Python and its essen-

tial SciPy library as together they provide support for Mat-

lab, HDF4, and HDF5 formats. Thus, our experience is a re-

minder of the importance of backwards compatibility, which

is likely well-recognized in the scientific programming com-

munity.

Scientific data in the Carbon Data Explorer are conceived

of as belonging to a particular run of a scenario, i.e., a spe-

cific geophysical modeling objective. Data cube(s) are stored

as one or more scenarios. During data insertion to MongoDB,

the X–Y slices at all time points are stored as separate docu-

ments. Each scenario has one timeline associated with it and

gridded data belonging to that scenario are uniquely keyed

by their date and time.

Non-gridded data are assigned arbitrary unique identifiers,

making it possible to have two pieces of non-gridded data

that represent the same instance in time (or span of time) as-

sociated with the same scenario. At the present time, the Car-

bon Data Explorer supports only structured grids; that is, the

gridded data in a scenario must share the same uniform, rect-

angular grid. Measurement values are stored and transmitted

independent of the spatial reference information, eliminating

redundancies and allowing for rapid retrieval and display on

the web. The X–Y values associated with gridded data – the

spatial coordinates of each data point – are stored separately

and transmitted only once to the web application. In contrast,

non-gridded data are stored with their X–Y values and trans-

mitted as GeoJSON, a spatially explicit form of JSON, as

their spatial structure may vary.

2.4 Provision of scientific data on the web

The Carbon Data Explorer web server API is designed to

work out-of-the-box so that data can be served and visual-

ized with the web application on any web browser connected

to the same local area network. That is, any user on the same

network as the computer running the server can access the

Carbon Data Explorer through its internet protocol (IP) ad-

dress in their web browser. Data providers might choose to

host the Carbon Data Explorer locally so as to keep their data

private and collaborate internally. Deploying the server and

web application on the public web is also easy, though it may

require some familiarity with networking technology.

The web server makes data available as resources that are

each associated with a uniform resource identifier (URI). The

model used for organizing these resources in a single names-

pace (i.e., under a single host or domain name) is the Repre-

sentational State Transfer (REST) model (Fielding and Tay-

lor, 2000), in which different representations of data are pro-

visioned with semantics. For example, a list of all available

scenarios can be obtained at, e.g., /scenarios.json as a JSON

document. Alternately, the metadata for a single scenario,

e.g., the casa_gfed_2004 scenario, can be obtained at /sce-

narios/casa_gfed_2004.json.

As another example, a map of carbon flux

on 18 January 2004 at 03:00 UTC from the

casa_gfed_2004 scenario can be obtained at

/scenarios/casa_gfed_2004/xy.json?time=2004-01-

18T03:00 where xy refers to the X–Y values from

our data cube (i.e., a geographic map). This distin-

guishes map data from a time series, which could be

requested in JSON format from the t.json resource,

e.g., t.json?start=2003-12-22T03:00&end=2005-01-

01T00:00&aggregate=mean&interval=daily. While the

t.json endpoint could be conceived of as delivering multiple

2-D maps (X–Y slices), it actually delivers a 1-D time series.

This is because fully-2-D time series were not required for

any of the features identified by the user community and

would be expensive to generate. The aggregate and interval

keywords, which designate the statistic and bin size of

the aggregation, respectively, are required parameters that

describe how multiple 2-D maps are collapsed into a 1-D

time series.

These limited examples showcase only a small part of the

functionality of the web server’s API (Table 2). These rel-

atively human-readable URIs allow for experienced users

to download data directly if preferred. They are also used

behind-the-scenes in the web application to programmati-

cally request data as indicated by a user through its graphical

user interface (GUI).

The RESTful design of the web server’s API underscores

an important point about having scientific data directly avail-

able in the user’s web browser. We believe scale changes,

changes in the palette, and similar changes are in the purview

of the client application; as they are merely changes in the ap-

plication’s state, they should be performed asynchronously

in the client application without requiring interaction with

the remote server. Keeping data on the server requires that

new representations are generated even for relatively mi-

nor changes in application state. One example is the seam-

less rescaling of the visualization, e.g., changing the stretch

on-the-fly. We have seen performance issues in comparable

approaches to this problem, e.g., with WMS, which must

request the data again from the server whenever scaling

changes are desired. While similar tools such as Giovanni

have also enabled seamless changes to visualization param-

eters, they do not allow for map-based querying of measure-

ment values or simultaneous comparison of measurement

values across data sets, as the Carbon Data Explorer does.

Geosci. Model Dev., 9, 383–392, 2016 www.geosci-model-dev.net/9/383/2016/



K. A. Endsley and M. G. Billmire: The Carbon Data Explorer, version 0.2.3 389

Table 2. Entry points for the Carbon Data Explorer web server API.

Web server API entry point Description

/scenarios.json Requests metadata for all or selected data sets

/[scenario]/grid.json Requests a GeoJSON representation of the scenario’s X–Y grid

/[scenario]/xy.json Requests data values corresponding to the scenario’s spatial grid

/[scenario]/t.json Requests time series data

Figure 3. Screenshot of the Carbon Data Explorer web browser application in the Single Map View mode.

3 Features

In the Carbon Data Explorer client application, a rich user

interface (Fig. 3) provides users many options for visualiz-

ing, exploring, comparing, and ultimately sharing geophysi-

cal data that have been previously imported with the Python

API and made available to the client through the web server

API. In Table 3 and in the subsequent text, we highlight

some of the chief features available to users. A demonstra-

tion video (doi:10.5281/zenodo.18941) of the web browser

application can also be seen through a link on the project

website (http://spatial.mtri.org/flux/).

3.1 Spatial visualization and analysis

The default view in the Carbon Data Explorer client appli-

cation is the Single Map View, which displays a geographic

view (an X–Y slice) of the data at a particular time. The Map

Settings define the map projection used (currently a choice

between Equirectangular or Mercator) and what kind of base

map should be drawn (e.g., continents with or without polit-

ical boundaries). When gridded data are drawn on the map,

the Symbology options allow a user to specify a color palette

from a selection of colorblind-safe, perceptually linear color

scales designed by Brewer (2014). Both sequential and di-

verging color scales are available for linear data that are ei-

ther constantly increasing or are diverging from a thresh-

old or mean value, respectively. The number of bins in the

color scale can also be specified. While the default stretch of

the data to the color scale is a standard deviation about the

mean, both the measure of central tendency and the number

of standard deviations can be changed. As an alternative to

this stretch, the scale can be stretched to the domain of the

data or any arbitrary endpoints as entered by the user. A bi-

nary map can also be shown, where a single color is used

to code for grid cells or data points that fall within a user-

specified range.

The Single Map View allows the user to explore the data

as in a geographic information system (GIS). Users can zoom

into the map display, pan the map around, and query the value

of a data point by hovering over it with the cursor. Non-

gridded data can be plotted on top of gridded data and au-

tomatically share the same color scale. An optional border

drawn around the non-gridded data points can help to dis-

tinguish them from the gridded data. This feature allows, for

example, the direct comparison of gridded carbon concentra-

tion with bias-corrected retrievals from atmospheric sound-

ing.

Data can be quickly aggregated in time or space from

within the web application. The temporal aggregation is han-
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Table 3. List of features (present when marked with an X) in the two visualization modes of the Carbon Data Explorer web browser

application.

Category Feature Single map view Coordinated view

Mapping Gridded data map display X X

Non-gridded data map display X

Basemap selection X X

Map projection selection X X

Map zoom and pan X X

View multiple map frames simultaneously X

View global/ continental/ regional data X X

Symbology Color palette selection X X

Scaling, stretching, and thresholding X X

Analysis Animation X

Map pixel querying X X

Temporal queries and aggregation X

Spatial queries and aggregation X

Time series line plot X

Display difference of two maps X

Side-by-side comparison X

Sharing Data export (as image or GIS file) X

Browser remembers settings X

Shareable URI/URL generation X

dled by the MongoDB aggregation pipeline, which facilitates

very fast aggregation of multiple X–Y slices (maps spanning

time). Spatial aggregation of one or more pixels (an aggre-

gate value spanning a spatially filtered subset) is achieved

using a combination of the JavaScript Topology Suite (JSTS)

Topology Suite JavaScript library and MongoDB’s geospa-

tial query operators. Both temporal aggregation and differ-

encing are handled by the MongoDB aggregation pipeline.

The calculation and display of anomalies is done client-side

in JavaScript. All other visualization tweaks and statistical

stretching are done on-the-fly in JavaScript.

Spatial filters can be drawn directly on the map interface

or imported as polygons defined using GeoJSON or well-

known text (WKT), a human-readable representation of ge-

ometry. Currently, only a single polygon can be used at a

time. Map data can also be differenced – one X–Y slice can

be subtracted from another (from a different scenario and

same time or vice-versa). This may help in identifying de-

viation from a seasonal trend or other anomalies as well as

help in identifying differences between different models or

different model runs of the same time step.

3.2 Time series analysis

While in the Single Map View, the map can be animated

in time, updating its display (at time T ) with the next X–

Y slice from our data cube. This update is seamless when

the web server API is hosted on the same local network or

when viewed over a high-speed internet connection, making

a refresh rate of one second practical for quickly reviewing

model results at a rate of a few hours, days, or months every

second (depending on the temporal resolution of the data).

A slower animation speed can be selected for a more mod-

erate pace. This high data throughput is made possible by

the text-based data format discussed earlier. Aggregates and

differenced data can also be animated in time.

A line plot at the bottom of the map shows the global time

series for the currently viewed scenario by default; it is the

aggregate mean value across the X–Y domain at each point

in time. This provides an overview of the overall trend in

the data across the spatial domain. When a spatial filter is

applied, an aggregate time series for only that region can be

generated. The non-aggregate time series for a specific pixel

can also be obtained by clicking on that grid point in the map.

Retrieval of a time series data for the line plot is slower than

other data requests but it still returns results in seconds.

3.3 Multiple-time and multiple-model comparison

The coordinated view allows for comparison of multiple ad-

jacent map views; it is essentially a grid of multiple Single

Map View elements. These maps synchronize their extent

whenever the user pans or zooms so that the same portion

of the globe is displayed in each one. The user’s cursor will

now display not just the value of a data point in one map but

the value at that those spatial coordinates in every map fa-

cilitating pixel-to-pixel comparison across the maps. Up to

nine (9) maps can be viewed at once, which allows for nine
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different time points or nine different models to be viewed

simultaneously.

3.4 Other features

A user’s Map Settings, Symbology, and other global set-

tings are stored in the web browser so that, upon closing the

browser and returning to the web application later, the same

color scale, map projection, and other settings are automat-

ically applied. This allows users to customize their view of

a data set and their workspace within the tool. All of these

settings can also be encoded as a URI (or URL). This allows

specific views of a data set to be bookmarked or shared with

others over the web. With this feature, a user can apply a

specific color scale, stretch (or threshold to highlight a par-

ticular anomaly), or an aggregate or differenced model result

and then share a link that ensures that their team member

will see the data exactly the same way. This is similar to the

virtual variables of Ferret-THREDDS but provides not only

access to an analysis but also access to a client for visualiz-

ing and interacting with that analysis. For offline storage and

sharing of results, model visualizations and data slices can be

exported as image files, CSVs (for non-gridded data), or as

geospatial data (for gridded data) in the form of ESRI ASCII

Grid files or GeoTIFFs; the latter two formats enable model

results to be downloaded and opened in a desktop GIS like

ArcGIS or QGIS.

4 Concluding remarks

The Carbon Data Explorer is presented as a prototype for

a comprehensive data management, analysis, visualization,

and sharing framework for Earth system science data sets,

particularly gridded spatiotemporal data sets (e.g., NASA

level III data products). As with any design, there are inher-

ent trade-offs. In prioritizing client-side queries and analy-

sis for regional and global-scale climate data (e.g., 1-degree-

by-1-degree), this design will not scale to higher-resolution

data sets, particularly those derived from moderate resolu-

tion satellite sensors (e.g., MODIS products at 1 km ground

sample distance). Future iterations of the Carbon Data Ex-

plorer and similar software tools can meet the challenge of

increasing spatial resolution by combining support for client-

side vector features with conventional raster imagery ser-

vices (e.g., Web Coverage Service, OPeNDAP, THREDDS).

The authors hope that the Carbon Data Explorer serves such

future integrations as a model for best practices in client-side

interaction, analysis, and visualization. In order to accommo-

date high-resolution data sets in the future, later versions of

the Carbon Data Explorer will need a radically redesigned

back-end, incorporating the scalability of alternatives such

as Apache Hadoop or Cassandra, and the development of

a text-based HTTP response middleware. A future tool that

makes these scalable back-ends operational for rapid, client-

side queries and analysis in a user-friendly web application,

informed by visualization best practices (as with the Carbon

Data Explorer), which accommodates high-resolution geo-

physical data, would be a significant advance.

The Carbon Data Explorer contains all the tools necessary

for online scientific data analysis in one package, including

a non-blocking web server, an extensible, light-weight API,

and a user-friendly web application. The text-based JSON

format for storage and data interchange is not only funda-

mentally compatible with web browsers, but also allows for

scientific data to be manipulated in the web browser, pro-

viding asynchronous, rapid filtering, and aggregation. In re-

sponse to the new protocols of CMIP6, the Carbon Data Ex-

plorer provides a framework for the distributed analysis of

climate model outputs. Analyses can effectively be book-

marked with URIs serving as permanent links to a particular

visualization and analysis of a data cube at a given point in

time. The framework’s open-source licensing and web inte-

gration enable the visualization and sharing of scientific data

through either a secure network or public portal. Also, as a

prototype, it is hoped that the software’s seamless, interac-

tive visualization and comparison features will inspire the ex-

pansion of existing data management and data access frame-

works such as TDS and Ferret-THREDDS to support more

rich, JavaScript-based visualization libraries. It is hoped they

will also facilitate the future improvement of the Carbon Data

Explorer and the inspiration of similar and better tools for

Earth system science.

Code availability

The source code is available from GitHub (https://github.

com/MichiganTechResearchInstitute/CarbonDataExplorer)

under the MIT license. A built version of the web browser

application (flux-client) is available upon request. This

can significantly help integration and deployment of the

visualization and analysis front-end.
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