Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 10, issue 3 | Copyright
Geosci. Model Dev., 10, 1363-1381, 2017
https://doi.org/10.5194/gmd-10-1363-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model experiment description paper 31 Mar 2017

Model experiment description paper | 31 Mar 2017

Global 7 km mesh nonhydrostatic Model Intercomparison Project for improving TYphoon forecast (TYMIP-G7): experimental design and preliminary results

Masuo Nakano et al.
Related authors
Turbulent enhancement of radar reflectivity factor for polydisperse cloud droplets
Keigo Matsuda and Ryo Onishi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-480,https://doi.org/10.5194/acp-2018-480, 2018
Manuscript under review for ACP
Direct Lagrangian tracking simulation of droplet growth in vertically developing cloud
Yuichi Kunishima and Ryo Onishi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-328,https://doi.org/10.5194/acp-2018-328, 2018
Manuscript under review for ACP
Stratospheric tropical warming event and its impact on the polar and tropical troposphere
Kunihiko Kodera, Nawo Eguchi, Hitoshi Mukougawa, Tomoe Nasuno, and Toshihiko Hirooka
Atmos. Chem. Phys., 17, 615-625, https://doi.org/10.5194/acp-17-615-2017,https://doi.org/10.5194/acp-17-615-2017, 2017
Reynolds-number dependence of turbulence enhancement on collision growth
Ryo Onishi and Axel Seifert
Atmos. Chem. Phys., 16, 12441-12455, https://doi.org/10.5194/acp-16-12441-2016,https://doi.org/10.5194/acp-16-12441-2016, 2016
Turbulence effects on warm-rain formation in precipitating shallow convection revisited
Axel Seifert and Ryo Onishi
Atmos. Chem. Phys., 16, 12127-12141, https://doi.org/10.5194/acp-16-12127-2016,https://doi.org/10.5194/acp-16-12127-2016, 2016
Related subject area
Atmospheric Sciences
Simulating atmospheric tracer concentrations for spatially distributed receptors: updates to the Stochastic Time-Inverted Lagrangian Transport model's R interface (STILT-R version 2)
Benjamin Fasoli, John C. Lin, David R. Bowling, Logan Mitchell, and Daniel Mendoza
Geosci. Model Dev., 11, 2813-2824, https://doi.org/10.5194/gmd-11-2813-2018,https://doi.org/10.5194/gmd-11-2813-2018, 2018
TOAST 1.0: Tropospheric Ozone Attribution of Sources with Tagging for CESM 1.2.2
Tim Butler, Aurelia Lupascu, Jane Coates, and Shuai Zhu
Geosci. Model Dev., 11, 2825-2840, https://doi.org/10.5194/gmd-11-2825-2018,https://doi.org/10.5194/gmd-11-2825-2018, 2018
MOPSMAP v1.0: a versatile tool for the modeling of aerosol optical properties
Josef Gasteiger and Matthias Wiegner
Geosci. Model Dev., 11, 2739-2762, https://doi.org/10.5194/gmd-11-2739-2018,https://doi.org/10.5194/gmd-11-2739-2018, 2018
An update on the RTTOV fast radiative transfer model (currently at version 12)
Roger Saunders, James Hocking, Emma Turner, Peter Rayer, David Rundle, Pascal Brunel, Jerome Vidot, Pascale Roquet, Marco Matricardi, Alan Geer, Niels Bormann, and Cristina Lupu
Geosci. Model Dev., 11, 2717-2737, https://doi.org/10.5194/gmd-11-2717-2018,https://doi.org/10.5194/gmd-11-2717-2018, 2018
GEM-MACH-PAH (rev2488): a new high-resolution chemical transport model for North American polycyclic aromatic hydrocarbons and benzene
Cynthia H. Whaley, Elisabeth Galarneau, Paul A. Makar, Ayodeji Akingunola, Wanmin Gong, Sylvie Gravel, Michael D. Moran, Craig Stroud, Junhua Zhang, and Qiong Zheng
Geosci. Model Dev., 11, 2609-2632, https://doi.org/10.5194/gmd-11-2609-2018,https://doi.org/10.5194/gmd-11-2609-2018, 2018
Cited articles
Baba, Y., Takahashi, K., Sugimura, T., and Goto, K.: Dynamical core of an atmospheric general circulation model on a yin–yang grid, Mon. Weather Rev., 138, 3988–4005, https://doi.org/10.1175/2010MWR3375.1, 2010.
Bénard, P., Vivoda, J., Mašek, J., Smolíková, P., Yessad, K., Smith, Ch., Brožková, R., and Geleyn, J.-F.: Dynamical kernel of the Aladin-NH spectral limited-area model: Revised formulation and sensitivity experiments, Q. J. Roy. Meteor. Soc., 136, 155–169, https://doi.org/10.1002/qj.522, 2010.
Bernardet, L., Tallapragada, V., Bao, S., Trahan, S., Kwon, Y., Liu, Q., Tong, M., Biswas, M., Brown, T., Stark, D., Carson, L., Yablonsky, R., Uhlhorn, E., Gopalakrishnan, S., Zhang, X., Marchok, T., Kuo, B., and Gall, R.: Community support and transition of research to operations for the hurricane weather research and Forecasting model, B. Am. Meteorol. Soc., 96, 953–960, https://doi.org/10.1175/BAMS-D-13-00093.1, 2015.
Braun, S. A. and Tao, W.-K.: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations, Mon. Weather Rev., 128, 3941–3961, 2000.
Bubnová, R., Hello, G., Bénard, P., and Geleyn, J.-F.: Integration of the fully elastic equations cast in the hydrostatic pressure terrain-following coordinate in the framework of the ARPEGE/Aladin NWP system, Mon. Weather Rev., 123, 515–535, 1995.
Publications Copernicus
Download
Short summary
Three 7 km mesh next-generation global models and a 20 km mesh conventional global model were run to improve tropical cyclone (TC) prediction. The 7 km mesh models reduce systematic errors in the TC track, intensity and wind radii predictions. However, the simulated TC structures and their intensities in each case are very different for each model. These results suggest that the development of more sophisticated initialization techniques and model physics is needed to further improvement.
Three 7 km mesh next-generation global models and a 20 km mesh conventional global model were...
Citation
Share