Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Geosci. Model Dev., 10, 1733-1749, 2017
https://doi.org/10.5194/gmd-10-1733-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Model description paper
24 Apr 2017
Evaluation of oceanic and atmospheric trajectory schemes in the TRACMASS trajectory model v6.0
Kristofer Döös1, Bror Jönsson2, and Joakim Kjellsson3 1Department of Meteorology, Stockholm University, 10691 Stockholm, Sweden
2Department of Geosciences, Guyot Hall, Princeton University, Princeton, NJ 08544, USA
3Atmospheric, Oceanic, and Planetary Physics, University of Oxford, Oxford, UK
Abstract. Three different trajectory schemes for oceanic and atmospheric general circulation models are compared in two different experiments. The theories of the trajectory schemes are presented showing the differential equations they solve and why they are mass conserving. One scheme assumes that the velocity fields are stationary for set intervals of time between saved model outputs and solves the trajectory path from a differential equation only as a function of space, i.e. stepwise stationary. The second scheme is a special case of the stepwise-stationary scheme, where velocities are assumed constant between general circulation model (GCM) outputs; it uses hence a fixed GCM time step. The third scheme uses a continuous linear interpolation of the fields in time and solves the trajectory path from a differential equation as a function of both space and time, i.e. a time-dependent scheme. The trajectory schemes are tested offline, i.e. using the already integrated and stored velocity fields from a GCM. The first comparison of the schemes uses trajectories calculated using the velocity fields from a high-resolution ocean general circulation model in the Agulhas region. The second comparison uses trajectories calculated using the wind fields from an atmospheric reanalysis. The study shows that using the time-dependent scheme over the stepwise-stationary scheme greatly improves accuracy with only a small increase in computational time. It is also found that with decreasing time steps the stepwise-stationary scheme becomes increasingly more accurate but at increased computational cost. The time-dependent scheme is therefore preferred over the stepwise-stationary scheme. However, when averaging over large ensembles of trajectories, the two schemes are comparable, as intrinsic variability dominates over numerical errors. The fixed GCM time step scheme is found to be less accurate than the stepwise-stationary scheme, even when considering averages over large ensembles.

Citation: Döös, K., Jönsson, B., and Kjellsson, J.: Evaluation of oceanic and atmospheric trajectory schemes in the TRACMASS trajectory model v6.0, Geosci. Model Dev., 10, 1733-1749, https://doi.org/10.5194/gmd-10-1733-2017, 2017.
Publications Copernicus
Download
Short summary
The TRACMASS trajectory code with corresponding schemes has been improved and become more accurate and user friendly over the years. An outcome of the present study is that we strongly recommend the use of the time-dependent TRACMASS scheme. We would also like to dissuade the use of the more primitive stepwise-stationary scheme, since the velocity fields remain stationary for longer periods, creating abrupt discontinuities in the velocity fields and yielding inaccurate solutions.
The TRACMASS trajectory code with corresponding schemes has been improved and become more...
Share