Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 10, issue 4
Geosci. Model Dev., 10, 1733-1749, 2017
https://doi.org/10.5194/gmd-10-1733-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 10, 1733-1749, 2017
https://doi.org/10.5194/gmd-10-1733-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 24 Apr 2017

Model description paper | 24 Apr 2017

Evaluation of oceanic and atmospheric trajectory schemes in the TRACMASS trajectory model v6.0

Kristofer Döös et al.
Related authors  
Nemo-Nordic 1.0: A NEMO based ocean model for Baltic & North Seas, research and operational applications
Robinson Hordoir, Lars Axell, Anders Höglund, Christian Dieterich, Filippa Fransner, Matthias Gröger, Ye Liu, Per Pemberton, Semjon Schimanke, Helen Andersson, Patrik Ljungemyr, Petter Nygren, Saeed Falahat, Adam Nord, Anette Jönsson, Irène Lake, Kristofer Döös, Magnus Hieronymus, Heiner Dietze, Ulrike Löptien, Ivan Kuznetsov, Antti Westerlund, Laura Tuomi, and Jari Haapala
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-2,https://doi.org/10.5194/gmd-2018-2, 2018
Manuscript under review for GMD
Short summary
On the glacial and interglacial thermohaline circulation and the associated transports of heat and freshwater
M. Ballarotta, S. Falahat, L. Brodeau, and K. Döös
Ocean Sci., 10, 907-921, https://doi.org/10.5194/os-10-907-2014,https://doi.org/10.5194/os-10-907-2014, 2014
Last Glacial Maximum world ocean simulations at eddy-permitting and coarse resolutions: do eddies contribute to a better consistency between models and palaeoproxies?
M. Ballarotta, L. Brodeau, J. Brandefelt, P. Lundberg, and K. Döös
Clim. Past, 9, 2669-2686, https://doi.org/10.5194/cp-9-2669-2013,https://doi.org/10.5194/cp-9-2669-2013, 2013
A Last Glacial Maximum world-ocean simulation at eddy-permitting resolution – Part 1: Experimental design and basic evaluation
M. Ballarotta, L. Brodeau, J. Brandefelt, P. Lundberg, and K. Döös
Clim. Past Discuss., https://doi.org/10.5194/cpd-9-297-2013,https://doi.org/10.5194/cpd-9-297-2013, 2013
Revised manuscript has not been submitted
Related subject area  
Numerical Methods
Global sensitivity analysis of parameter uncertainty in landscape evolution models
Christopher J. Skinner, Tom J. Coulthard, Wolfgang Schwanghart, Marco J. Van De Wiel, and Greg Hancock
Geosci. Model Dev., 11, 4873-4888, https://doi.org/10.5194/gmd-11-4873-2018,https://doi.org/10.5194/gmd-11-4873-2018, 2018
Short summary
Symmetric equations on the surface of a sphere as used by model GISS:IB
Gary L. Russell, David H. Rind, and Jeffrey Jonas
Geosci. Model Dev., 11, 4637-4656, https://doi.org/10.5194/gmd-11-4637-2018,https://doi.org/10.5194/gmd-11-4637-2018, 2018
Short summary
The VOLNA-OP2 tsunami code (version 1.5)
Istvan Z. Reguly, Daniel Giles, Devaraj Gopinathan, Laure Quivy, Joakim H. Beck, Michael B. Giles, Serge Guillas, and Frederic Dias
Geosci. Model Dev., 11, 4621-4635, https://doi.org/10.5194/gmd-11-4621-2018,https://doi.org/10.5194/gmd-11-4621-2018, 2018
Short summary
Bayesian earthquake dating and seismic hazard assessment using chlorine-36 measurements (BED v1)
Joakim Beck, Sören Wolfers, and Gerald P. Roberts
Geosci. Model Dev., 11, 4383-4397, https://doi.org/10.5194/gmd-11-4383-2018,https://doi.org/10.5194/gmd-11-4383-2018, 2018
Short summary
Challenges and design choices for global weather and climate models based on machine learning
Peter D. Dueben and Peter Bauer
Geosci. Model Dev., 11, 3999-4009, https://doi.org/10.5194/gmd-11-3999-2018,https://doi.org/10.5194/gmd-11-3999-2018, 2018
Short summary
Cited articles  
Adcroft, A. and Campin, J.-M.: Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models, Ocean Model., 7, 269–284, https://doi.org/10.1016/j.ocemod.2003.09.003, 2004.
Blanke, B. and Raynaud, S.: Kinematics of the Pacific Equatorial Undercurrent: a Eulerian and Lagrangian approach from GCM results, J. Phys. Oceanogr., 27, 1038–1053, 1997.
Blanke, B., Arhan, M., Madec, G., and Roche, S.: Warm water paths in the equatorial Atlantic as diagnosed with a general circulation model, J. Phys. Oceanogr., 29, 2753–2768, 1999.
Brodeau, L., Barnier, B., Treguier, A.-M., Penduff, T., and Gulev, S.: An ERA40-based atmospheric forcing for global ocean circulation models, Ocean Model., 31, 88–104, https://doi.org/10.1016/j.ocemod.2009.10.005, 2010.
Butcher, J. C.: Numerical Methods for Ordinary Differential Equations, John Wiley & Sons, Ltd, https://doi.org/10.1002/9781119121534, 2016.
Publications Copernicus
Download
Short summary
The TRACMASS trajectory code with corresponding schemes has been improved and become more accurate and user friendly over the years. An outcome of the present study is that we strongly recommend the use of the time-dependent TRACMASS scheme. We would also like to dissuade the use of the more primitive stepwise-stationary scheme, since the velocity fields remain stationary for longer periods, creating abrupt discontinuities in the velocity fields and yielding inaccurate solutions.
The TRACMASS trajectory code with corresponding schemes has been improved and become more...
Citation
Share