Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 10, issue 4 | Copyright
Geosci. Model Dev., 10, 1835-1847, 2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 02 May 2017

Model description paper | 02 May 2017

Itzï (version 17.1): an open-source, distributed GIS model for dynamic flood simulation

Laurent Guillaume Courty1,2, Adrián Pedrozo-Acuña1, and Paul David Bates3 Laurent Guillaume Courty et al.
  • 1Instituto de Ingeniería, Universidad Nacional Autónoma de México, Mexico City, Mexico
  • 2Programa de Maestria y Doctorado en Ingeniería, Universidad Nacional Autónoma de México, Mexico City, Mexico
  • 3School of Geographical Sciences, University of Bristol, University Road, Bristol, UK

Abstract. Worldwide, floods are acknowledged as one of the most destructive hazards. In human-dominated environments, their negative impacts are ascribed not only to the increase in frequency and intensity of floods but also to a strong feedback between the hydrological cycle and anthropogenic development. In order to advance a more comprehensive understanding of this complex interaction, this paper presents the development of a new open-source tool named Itzï that enables the 2-D numerical modelling of rainfall–runoff processes and surface flows integrated with the open-source geographic information system (GIS) software known as GRASS. Therefore, it takes advantage of the ability given by GIS environments to handle datasets with variations in both temporal and spatial resolutions. Furthermore, the presented numerical tool can handle datasets from different sources with varied spatial resolutions, facilitating the preparation and management of input and forcing data. This ability reduces the preprocessing time usually required by other models. Itzï uses a simplified form of the shallow water equations, the damped partial inertia equation, for the resolution of surface flows, and the Green–Ampt model for the infiltration. The source code is now publicly available online, along with complete documentation. The numerical model is verified against three different tests cases: firstly, a comparison with an analytic solution of the shallow water equations is introduced; secondly, a hypothetical flooding event in an urban area is implemented, where results are compared to those from an established model using a similar approach; and lastly, the reproduction of a real inundation event that occurred in the city of Kingston upon Hull, UK, in June 2007, is presented. The numerical approach proved its ability at reproducing the analytic and synthetic test cases. Moreover, simulation results of the real flood event showed its suitability at identifying areas affected by flooding, which were verified against those recorded after the event by local authorities.

Publications Copernicus
Short summary
This paper presents Itzï, a new free software for the simulation of floods. It is integrated with a geographic information system (GIS), which reduces the human time necessary for preparing the entry data and analysing the results of the simulation. Itzï uses a simplified numerical scheme that permits to obtain results faster than with other types of models using more complex equations. In this article, Itzï is tested with three cases that show its suitability to simulate urban floods.
This paper presents Itzï, a new free software for the simulation of floods. It is integrated...