Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
Volume 10, issue 5
Geosci. Model Dev., 10, 1849-1872, 2017
https://doi.org/10.5194/gmd-10-1849-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 10, 1849-1872, 2017
https://doi.org/10.5194/gmd-10-1849-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model evaluation paper 05 May 2017

Model evaluation paper | 05 May 2017

weather@home 2: validation of an improved global–regional climate modelling system

Benoit P. Guillod et al.
Related authors  
A large set of potential past, present and future hydro-meteorological time series for the UK
Benoit P. Guillod, Richard G. Jones, Simon J. Dadson, Gemma Coxon, Gianbattista Bussi, James Freer, Alison L. Kay, Neil R. Massey, Sarah N. Sparrow, David C. H. Wallom, Myles R. Allen, and Jim W. Hall
Hydrol. Earth Syst. Sci., 22, 611-634, https://doi.org/10.5194/hess-22-611-2018,https://doi.org/10.5194/hess-22-611-2018, 2018
Short summary
A novel bias correction methodology for climate impact simulations
S. Sippel, F. E. L. Otto, M. Forkel, M. R. Allen, B. P. Guillod, M. Heimann, M. Reichstein, S. I. Seneviratne, K. Thonicke, and M. D. Mahecha
Earth Syst. Dynam., 7, 71-88, https://doi.org/10.5194/esd-7-71-2016,https://doi.org/10.5194/esd-7-71-2016, 2016
Short summary
Land-surface controls on afternoon precipitation diagnosed from observational data: uncertainties and confounding factors
B. P. Guillod, B. Orlowsky, D. Miralles, A. J. Teuling, P. D. Blanken, N. Buchmann, P. Ciais, M. Ek, K. L. Findell, P. Gentine, B. R. Lintner, R. L. Scott, B. Van den Hurk, and S. I. Seneviratne
Atmos. Chem. Phys., 14, 8343-8367, https://doi.org/10.5194/acp-14-8343-2014,https://doi.org/10.5194/acp-14-8343-2014, 2014
Related subject area  
Atmospheric Sciences
Chemistry and deposition in the Model of Atmospheric composition at Global and Regional scales using Inversion Techniques for Trace gas Emissions (MAGRITTE v1.1) – Part 1: Chemical mechanism
Jean-François Müller, Trissevgeni Stavrakou, and Jozef Peeters
Geosci. Model Dev., 12, 2307-2356, https://doi.org/10.5194/gmd-12-2307-2019,https://doi.org/10.5194/gmd-12-2307-2019, 2019
Short summary
The Matsuno baroclinic wave test case
Ofer Shamir, Itamar Yacoby, Shlomi Ziskin Ziv, and Nathan Paldor
Geosci. Model Dev., 12, 2181-2193, https://doi.org/10.5194/gmd-12-2181-2019,https://doi.org/10.5194/gmd-12-2181-2019, 2019
Short summary
Development and evaluation of pollen source methodologies for the Victorian Grass Pollen Emissions Module VGPEM1.0
Kathryn M. Emmerson, Jeremy D. Silver, Edward Newbigin, Edwin R. Lampugnani, Cenk Suphioglu, Alan Wain, and Elizabeth Ebert
Geosci. Model Dev., 12, 2195-2214, https://doi.org/10.5194/gmd-12-2195-2019,https://doi.org/10.5194/gmd-12-2195-2019, 2019
Short summary
Convective response to large-scale forcing in the tropical western Pacific simulated by spCAM5 and CanAM4.3
Toni Mitovski, Jason N. S. Cole, Norman A. McFarlane, Knut von Salzen, and Guang J. Zhang
Geosci. Model Dev., 12, 2107-2117, https://doi.org/10.5194/gmd-12-2107-2019,https://doi.org/10.5194/gmd-12-2107-2019, 2019
Short summary
Atmospheric boundary layer dynamics from balloon soundings worldwide: CLASS4GL v1.0
Hendrik Wouters, Irina Y. Petrova, Chiel C. van Heerwaarden, Jordi Vilà-Guerau de Arellano, Adriaan J. Teuling, Vicky Meulenberg, Joseph A. Santanello, and Diego G. Miralles
Geosci. Model Dev., 12, 2139-2153, https://doi.org/10.5194/gmd-12-2139-2019,https://doi.org/10.5194/gmd-12-2139-2019, 2019
Short summary
Cited articles  
Allen, M.: Do-it-yourself climate prediction, Nature, 401, 642–642, https://doi.org/10.1038/44266, 1999.
Anderson, D. P.: Boinc: A system for public-resource computing and storage, in: Fifth IEEE/ACM International Workshop on Grid Computing, IEEE, 4–10, 2004.
Anstey, J. A., Davini, P., Gray, L. J., Woollings, T. J., Butchart, N., Cagnazzo, C., Christiansen, B., Hardiman, S. C., Osprey, S. M., and Yang, S.: Multi-model analysis of Northern Hemisphere winter blocking: Model biases and the role of resolution, J. Geophys. Res., 118, 3956–3971, https://doi.org/10.1002/jgrd.50231, 2013.
Berckmans, J., Woollings, T., Demory, M.-E., Vidale, P.-L., and Roberts, M.: Atmospheric blocking in a high resolution climate model: influences of mean state, orography and eddy forcing, Atmos. Sci. Lett., 14, 34–40, https://doi.org/10.1002/asl2.412, 2013.
Black, M. T., Karoly, D. J., Rosier, S. M., Dean, S. M., King, A. D., Massey, N. R., Sparrow, S. N., Bowery, A., Wallom, D., Jones, R. G., Otto, F. E. L., and Allen, M. R.: The weather@home regional climate modelling project for Australia and New Zealand, Geosci. Model Dev., 9, 3161–3176, https://doi.org/10.5194/gmd-9-3161-2016, 2016.
Publications Copernicus
Download
Short summary
The weather@home climate modelling system uses the computing power of volunteers around the world to generate a very large number of climate model simulations. This is particularly useful when investigating extreme weather events, notably for the attribution of these events to anthropogenic climate change. A new version of weather@home is presented and evaluated, which includes an improved representation of the land surface and increased horizontal resolution over Europe.
The weather@home climate modelling system uses the computing power of volunteers around the...
Citation