Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
Volume 10, issue 6
Geosci. Model Dev., 10, 2321–2332, 2017
https://doi.org/10.5194/gmd-10-2321-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 10, 2321–2332, 2017
https://doi.org/10.5194/gmd-10-2321-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Methods for assessment of models 23 Jun 2017

Methods for assessment of models | 23 Jun 2017

A Bayesian posterior predictive framework for weighting ensemble regional climate models

Yanan Fan et al.
Related authors  
Linear Optimal Runoff Aggregate (LORA): a global gridded synthesis runoff product
Sanaa Hobeichi, Gab Abramowitz, Jason Evans, and Hylke E. Beck
Hydrol. Earth Syst. Sci., 23, 851–870, https://doi.org/10.5194/hess-23-851-2019,https://doi.org/10.5194/hess-23-851-2019, 2019
The INTENSE project: using observations and models to understand the past, present and future of sub-daily rainfall extremes
Stephen Blenkinsop, Hayley J. Fowler, Renaud Barbero, Steven C. Chan, Selma B. Guerreiro, Elizabeth Kendon, Geert Lenderink, Elizabeth Lewis, Xiao-Feng Li, Seth Westra, Lisa Alexander, Richard P. Allan, Peter Berg, Robert J. H. Dunn, Marie Ekström, Jason P. Evans, Greg Holland, Richard Jones, Erik Kjellström, Albert Klein-Tank, Dennis Lettenmaier, Vimal Mishra, Andreas F. Prein, Justin Sheffield, and Mari R. Tye
Adv. Sci. Res., 15, 117–126, https://doi.org/10.5194/asr-15-117-2018,https://doi.org/10.5194/asr-15-117-2018, 2018
Short summary
Estimating grassland curing with remotely sensed data
Wasin Chaivaranont, Jason P. Evans, Yi Y. Liu, and Jason J. Sharples
Nat. Hazards Earth Syst. Sci., 18, 1535–1554, https://doi.org/10.5194/nhess-18-1535-2018,https://doi.org/10.5194/nhess-18-1535-2018, 2018
Short summary
Derived Optimal Linear Combination Evapotranspiration (DOLCE): a global gridded synthesis ET estimate
Sanaa Hobeichi, Gab Abramowitz, Jason Evans, and Anna Ukkola
Hydrol. Earth Syst. Sci., 22, 1317–1336, https://doi.org/10.5194/hess-22-1317-2018,https://doi.org/10.5194/hess-22-1317-2018, 2018
Short summary
Hydroclimatic variability and predictability: a survey of recent research
Randal D. Koster, Alan K. Betts, Paul A. Dirmeyer, Marc Bierkens, Katrina E. Bennett, Stephen J. Déry, Jason P. Evans, Rong Fu, Felipe Hernandez, L. Ruby Leung, Xu Liang, Muhammad Masood, Hubert Savenije, Guiling Wang, and Xing Yuan
Hydrol. Earth Syst. Sci., 21, 3777–3798, https://doi.org/10.5194/hess-21-3777-2017,https://doi.org/10.5194/hess-21-3777-2017, 2017
Short summary
Related subject area  
Numerical Methods
Evaluation of lossless and lossy algorithms for the compression of scientific datasets in netCDF-4 or HDF5 files
Xavier Delaunay, Aurélie Courtois, and Flavien Gouillon
Geosci. Model Dev., 12, 4099–4113, https://doi.org/10.5194/gmd-12-4099-2019,https://doi.org/10.5194/gmd-12-4099-2019, 2019
Short summary
Efficiency and robustness in Monte Carlo sampling for 3-D geophysical inversions with Obsidian v0.1.2: setting up for success
Richard Scalzo, David Kohn, Hugo Olierook, Gregory Houseman, Rohitash Chandra, Mark Girolami, and Sally Cripps
Geosci. Model Dev., 12, 2941–2960, https://doi.org/10.5194/gmd-12-2941-2019,https://doi.org/10.5194/gmd-12-2941-2019, 2019
Short summary
LSCE-FFNN-v1: a two-step neural network model for the reconstruction of surface ocean pCO2 over the global ocean
Anna Denvil-Sommer, Marion Gehlen, Mathieu Vrac, and Carlos Mejia
Geosci. Model Dev., 12, 2091–2105, https://doi.org/10.5194/gmd-12-2091-2019,https://doi.org/10.5194/gmd-12-2091-2019, 2019
Short summary
FESOM-C v.2: coastal dynamics on hybrid unstructured meshes
Alexey Androsov, Vera Fofonova, Ivan Kuznetsov, Sergey Danilov, Natalja Rakowsky, Sven Harig, Holger Brix, and Karen Helen Wiltshire
Geosci. Model Dev., 12, 1009–1028, https://doi.org/10.5194/gmd-12-1009-2019,https://doi.org/10.5194/gmd-12-1009-2019, 2019
Short summary
A new method (M3Fusion v1) for combining observations and multiple model output for an improved estimate of the global surface ozone distribution
Kai-Lan Chang, Owen R. Cooper, J. Jason West, Marc L. Serre, Martin G. Schultz, Meiyun Lin, Virginie Marécal, Béatrice Josse, Makoto Deushi, Kengo Sudo, Junhua Liu, and Christoph A. Keller
Geosci. Model Dev., 12, 955–978, https://doi.org/10.5194/gmd-12-955-2019,https://doi.org/10.5194/gmd-12-955-2019, 2019
Short summary
Cited articles  
Bhat, K. S., Haran, M., Terando, A., and Keller, K.: Climate Projections Using Bayesian Model Averaging and Space-Time Dependence, J. Agric. Biol. Envir. S., 16, 606?628, https://doi.org/10.1007/s13253-011-0069-3, 2011.
Buser, C. M., Künsch, H. R., Lüthi, D., Wild, M., and Schär, M. C.: Bayesian multi-model projections of climate: bias assumptions and interannual variability, Clim. Dynam., 33, 849–868, 2010.
Buser, C. M., Künsch, H. R., and Schär, C.: Bayesian multi-model projections of climate: generalization and application to ENSEMBLES results, Climate Res., 44, 227–241, 2010.
Christensen, J. H., Carter, T. R., Rummukainen, M., and Amanatidis, G.: Evaluating the performance and utility of regional climate models: the PRUDENCE project, Climatic Change, 81, 1–6, https://doi.org/10.1007/s10584-006-9211-6, 2007.
Cortés-Hernández, V. E., Zheng, F., Evans, J. P., Lambert, M., Sharma, A., and Westra, S.: Evaluating regional climate models for simulating sub-daily rainfall extremes, Clim. Dynam., 47, 1613–1628, https://doi.org/10.1007/s00382-015-2923-4, 2015.
Publications Copernicus
Download
Short summary
We develop a novel and principled Bayesian statistical approach to computing model weights in climate change projection ensembles of regional climate models. The approach accounts for uncertainty in model bias, trend and internal variability. The weights are easily interpretable and the ensemble weighted models are shown to provide the correct coverage and improve upon existing methods in terms of providing narrower confidence intervals for climate change projections.
We develop a novel and principled Bayesian statistical approach to computing model weights in...
Citation