Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 10, issue 6 | Copyright
Geosci. Model Dev., 10, 2365-2377, 2017
https://doi.org/10.5194/gmd-10-2365-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Methods for assessment of models 27 Jun 2017

Methods for assessment of models | 27 Jun 2017

STRAPS v1.0: evaluating a methodology for predicting electron impact ionisation mass spectra for the aerosol mass spectrometer

David O. Topping et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Svenja Lange on behalf of the Authors (18 Apr 2017)  Author's response    Manuscript
ED: Publish as is (05 May 2017) by Alexander Archibald
Publications Copernicus
Download
Short summary
Our ability to model the chemical and thermodynamic processes that lead to secondary organic aerosol (SOA) formation is thought to be hampered by the complexity of the system. In this proof of concept study, the ability to train supervised methods to predict electron impact ionisation (EI) mass spectra for the AMS is evaluated to facilitate improved model evaluation. The study demonstrates the use of a methodology that would be improved with more training data and data from simple mixed systems.
Our ability to model the chemical and thermodynamic processes that lead to secondary organic...
Citation
Share