Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 10, issue 6 | Copyright
Geosci. Model Dev., 10, 2365-2377, 2017
https://doi.org/10.5194/gmd-10-2365-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Methods for assessment of models 27 Jun 2017

Methods for assessment of models | 27 Jun 2017

STRAPS v1.0: evaluating a methodology for predicting electron impact ionisation mass spectra for the aerosol mass spectrometer

David O. Topping et al.
Related authors
Characterisation of biofluorescent aerosol emissions over winter and summer periods in the United Kingdom
Elizabeth Forde, Martin Gallagher, Virginia Foot, Roland Sarda-Esteve, Ian Crawford, Paul Kaye, Warren Stanley, and David Topping
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-513,https://doi.org/10.5194/acp-2018-513, 2018
Manuscript under review for ACP
Measured particle water uptake enhanced by co-condensing vapours
Dawei Hu, David Topping, and Gordon McFiggans
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-586,https://doi.org/10.5194/acp-2018-586, 2018
Manuscript under review for ACP
Machine learning for improved data analysis of biological aerosol using the WIBS
Simon Ruske, David O. Topping, Virginia E. Foot, Andrew P. Morse, and Martin W. Gallagher
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-126,https://doi.org/10.5194/amt-2018-126, 2018
Manuscript under review for AMT
Evaluating the mutagenic potential of aerosol organic compounds using informatics-based screening
Stefano Decesari, Simona Kovarich, Manuela Pavan, Arianna Bassan, Andrea Ciacci, and David Topping
Atmos. Chem. Phys., 18, 2329-2340, https://doi.org/10.5194/acp-18-2329-2018,https://doi.org/10.5194/acp-18-2329-2018, 2018
Maxwell–Stefan diffusion: a framework for predicting condensed phase diffusion and phase separation in atmospheric aerosol
Kathryn Fowler, Paul J. Connolly, David O. Topping, and Simon O'Meara
Atmos. Chem. Phys., 18, 1629-1642, https://doi.org/10.5194/acp-18-1629-2018,https://doi.org/10.5194/acp-18-1629-2018, 2018
Related subject area
Atmospheric Sciences
Adding four-dimensional data assimilation by analysis nudging to the Model for Prediction Across Scales – Atmosphere (version 4.0)
Orren Russell Bullock Jr., Hosein Foroutan, Robert C. Gilliam, and Jerold A. Herwehe
Geosci. Model Dev., 11, 2897-2922, https://doi.org/10.5194/gmd-11-2897-2018,https://doi.org/10.5194/gmd-11-2897-2018, 2018
Simulating atmospheric tracer concentrations for spatially distributed receptors: updates to the Stochastic Time-Inverted Lagrangian Transport model's R interface (STILT-R version 2)
Benjamin Fasoli, John C. Lin, David R. Bowling, Logan Mitchell, and Daniel Mendoza
Geosci. Model Dev., 11, 2813-2824, https://doi.org/10.5194/gmd-11-2813-2018,https://doi.org/10.5194/gmd-11-2813-2018, 2018
TOAST 1.0: Tropospheric Ozone Attribution of Sources with Tagging for CESM 1.2.2
Tim Butler, Aurelia Lupascu, Jane Coates, and Shuai Zhu
Geosci. Model Dev., 11, 2825-2840, https://doi.org/10.5194/gmd-11-2825-2018,https://doi.org/10.5194/gmd-11-2825-2018, 2018
MOPSMAP v1.0: a versatile tool for the modeling of aerosol optical properties
Josef Gasteiger and Matthias Wiegner
Geosci. Model Dev., 11, 2739-2762, https://doi.org/10.5194/gmd-11-2739-2018,https://doi.org/10.5194/gmd-11-2739-2018, 2018
An update on the RTTOV fast radiative transfer model (currently at version 12)
Roger Saunders, James Hocking, Emma Turner, Peter Rayer, David Rundle, Pascal Brunel, Jerome Vidot, Pascale Roquet, Marco Matricardi, Alan Geer, Niels Bormann, and Cristina Lupu
Geosci. Model Dev., 11, 2717-2737, https://doi.org/10.5194/gmd-11-2717-2018,https://doi.org/10.5194/gmd-11-2717-2018, 2018
Cited articles
Aiken, A. C., DeCarlo, P. F., and Jimenez, J. L.: Elemental analysis of organic species with electron ionization high-resolution mass spectrometry, Anal. Chem., 79, 8350–8358, https://doi.org/10.1021/ac071150w, 2007.
Alfarra, M. R., Good, N., Wyche, K. P., Hamilton, J. F., Monks, P. S., Lewis, A. C., and McFiggans, G.: Water uptake is independent of the inferred composition of secondary aerosols derived from multiple biogenic VOCs, Atmos. Chem. Phys., 13, 11769–11789, https://doi.org/10.5194/acp-13-11769-2013, 2013.
Aumont, B., Szopa, S., and Madronich, S.: Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: development of an explicit model based on a self generating approach, Atmos. Chem. Phys., 5, 2497–2517, https://doi.org/10.5194/acp-5-2497-2005, 2005.
Aumont, B., Valorso, R., Mouchel-Vallon, C., Camredon, M., Lee-Taylor, J., and Madronich, S.: Modeling SOA formation from the oxidation of intermediate volatility n-alkanes, Atmos. Chem. Phys., 12, 7577–7589, https://doi.org/10.5194/acp-12-7577-2012, 2012.
Publications Copernicus
Download
Short summary
Our ability to model the chemical and thermodynamic processes that lead to secondary organic aerosol (SOA) formation is thought to be hampered by the complexity of the system. In this proof of concept study, the ability to train supervised methods to predict electron impact ionisation (EI) mass spectra for the AMS is evaluated to facilitate improved model evaluation. The study demonstrates the use of a methodology that would be improved with more training data and data from simple mixed systems.
Our ability to model the chemical and thermodynamic processes that lead to secondary organic...
Citation
Share