Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year
    4.890
  • CiteScore value: 4.49 CiteScore
    4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 51 Scimago H
    index 51
Volume 10, issue 6
Geosci. Model Dev., 10, 2365-2377, 2017
https://doi.org/10.5194/gmd-10-2365-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 10, 2365-2377, 2017
https://doi.org/10.5194/gmd-10-2365-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Methods for assessment of models 27 Jun 2017

Methods for assessment of models | 27 Jun 2017

STRAPS v1.0: evaluating a methodology for predicting electron impact ionisation mass spectra for the aerosol mass spectrometer

David O. Topping et al.
Related authors  
A method for extracting calibrated volatility information from the FIGAERO-HR-ToF-CIMS and its experimental application
Thomas J. Bannan, Michael Le Breton, Michael Priestley, Stephen D. Worrall, Asan Bacak, Nicholas A. Marsden, Archit Mehra, Julia Hammes, Mattias Hallquist, M. Rami Alfarra, Ulrich K. Krieger, Jonathan P. Reid, John Jayne, Wade Robinson, Gordon McFiggans, Hugh Coe, Carl J. Percival, and Dave Topping
Atmos. Meas. Tech., 12, 1429-1439, https://doi.org/10.5194/amt-12-1429-2019,https://doi.org/10.5194/amt-12-1429-2019, 2019
Short summary
Characterisation and source identification of biofluorescent aerosol emissions over winter and summer periods in the United Kingdom
Elizabeth Forde, Martin Gallagher, Virginia Foot, Roland Sarda-Esteve, Ian Crawford, Paul Kaye, Warren Stanley, and David Topping
Atmos. Chem. Phys., 19, 1665-1684, https://doi.org/10.5194/acp-19-1665-2019,https://doi.org/10.5194/acp-19-1665-2019, 2019
Short summary
Machine learning for improved data analysis of biological aerosol using the WIBS
Simon Ruske, David O. Topping, Virginia E. Foot, Andrew P. Morse, and Martin W. Gallagher
Atmos. Meas. Tech., 11, 6203-6230, https://doi.org/10.5194/amt-11-6203-2018,https://doi.org/10.5194/amt-11-6203-2018, 2018
Short summary
Measured particle water uptake enhanced by co-condensing vapours
Dawei Hu, David Topping, and Gordon McFiggans
Atmos. Chem. Phys., 18, 14925-14937, https://doi.org/10.5194/acp-18-14925-2018,https://doi.org/10.5194/acp-18-14925-2018, 2018
Short summary
Online gas- and particle-phase measurements of organosulfates, organosulfonates and nitrooxy organosulfates in Beijing utilizing a FIGAERO ToF-CIMS
Michael Le Breton, Yujue Wang, Åsa M. Hallquist, Ravi Kant Pathak, Jing Zheng, Yudong Yang, Dongjie Shang, Marianne Glasius, Thomas J. Bannan, Qianyun Liu, Chak K. Chan, Carl J. Percival, Wenfei Zhu, Shengrong Lou, David Topping, Yuchen Wang, Jianzhen Yu, Keding Lu, Song Guo, Min Hu, and Mattias Hallquist
Atmos. Chem. Phys., 18, 10355-10371, https://doi.org/10.5194/acp-18-10355-2018,https://doi.org/10.5194/acp-18-10355-2018, 2018
Short summary
Related subject area  
Atmospheric Sciences
Development of a dynamic dust source map for NMME-DREAM v1.0 model based on MODIS Normalized Difference Vegetation Index (NDVI) over the Arabian Peninsula
Stavros Solomos, Abdelgadir Abuelgasim, Christos Spyrou, Ioannis Binietoglou, and Slobodan Nickovic
Geosci. Model Dev., 12, 979-988, https://doi.org/10.5194/gmd-12-979-2019,https://doi.org/10.5194/gmd-12-979-2019, 2019
Short summary
Mechanistic representation of soil nitrogen emissions in the Community Multiscale Air Quality (CMAQ) model v 5.1
Quazi Z. Rasool, Jesse O. Bash, and Daniel S. Cohan
Geosci. Model Dev., 12, 849-878, https://doi.org/10.5194/gmd-12-849-2019,https://doi.org/10.5194/gmd-12-849-2019, 2019
Short summary
A benchmark for testing the accuracy and computational cost of shortwave top-of-atmosphere reflectance calculations in clear-sky aerosol-laden atmospheres
Jeronimo Escribano, Alessio Bozzo, Philippe Dubuisson, Johannes Flemming, Robin J. Hogan, Laurent C.-Labonnote, and Olivier Boucher
Geosci. Model Dev., 12, 805-827, https://doi.org/10.5194/gmd-12-805-2019,https://doi.org/10.5194/gmd-12-805-2019, 2019
Short summary
MP CBM-Z V1.0: design for a new Carbon Bond Mechanism Z (CBM-Z) gas-phase chemical mechanism architecture for next-generation processors
Hui Wang, Junmin Lin, Qizhong Wu, Huansheng Chen, Xiao Tang, Zifa Wang, Xueshun Chen, Huaqiong Cheng, and Lanning Wang
Geosci. Model Dev., 12, 749-764, https://doi.org/10.5194/gmd-12-749-2019,https://doi.org/10.5194/gmd-12-749-2019, 2019
Short summary
Similarities within a multi-model ensemble: functional data analysis framework
Eva Holtanová, Thomas Mendlik, Jan Koláček, Ivanka Horová, and Jiří Mikšovský
Geosci. Model Dev., 12, 735-747, https://doi.org/10.5194/gmd-12-735-2019,https://doi.org/10.5194/gmd-12-735-2019, 2019
Short summary
Cited articles  
Aiken, A. C., DeCarlo, P. F., and Jimenez, J. L.: Elemental analysis of organic species with electron ionization high-resolution mass spectrometry, Anal. Chem., 79, 8350–8358, https://doi.org/10.1021/ac071150w, 2007.
Alfarra, M. R., Good, N., Wyche, K. P., Hamilton, J. F., Monks, P. S., Lewis, A. C., and McFiggans, G.: Water uptake is independent of the inferred composition of secondary aerosols derived from multiple biogenic VOCs, Atmos. Chem. Phys., 13, 11769–11789, https://doi.org/10.5194/acp-13-11769-2013, 2013.
Aumont, B., Szopa, S., and Madronich, S.: Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: development of an explicit model based on a self generating approach, Atmos. Chem. Phys., 5, 2497–2517, https://doi.org/10.5194/acp-5-2497-2005, 2005.
Aumont, B., Valorso, R., Mouchel-Vallon, C., Camredon, M., Lee-Taylor, J., and Madronich, S.: Modeling SOA formation from the oxidation of intermediate volatility n-alkanes, Atmos. Chem. Phys., 12, 7577–7589, https://doi.org/10.5194/acp-12-7577-2012, 2012.
Publications Copernicus
Download
Short summary
Our ability to model the chemical and thermodynamic processes that lead to secondary organic aerosol (SOA) formation is thought to be hampered by the complexity of the system. In this proof of concept study, the ability to train supervised methods to predict electron impact ionisation (EI) mass spectra for the AMS is evaluated to facilitate improved model evaluation. The study demonstrates the use of a methodology that would be improved with more training data and data from simple mixed systems.
Our ability to model the chemical and thermodynamic processes that lead to secondary organic...
Citation