
Analytical 2DV package for salinity and
turbulence modules

package for iFlow

Yoeri Dijkstra



Copyright c© 2017. Y.M. Dijkstra

When using iFlow, please cite Dijkstra, Y. M., Brouwer, R. L., Schuttelaars, H. M., and
Schramkowski, G. P. (Manuscript submitted to Geoscientific Model Development). The
iFlow Modelling Framework v2.4. A modular idealised process-based model for flow and
transport in estuaries.
Additionally you may refer to this manual as Dijkstra, Y. M. (2017). iFlow modelling frame-
work. User manual & technical description.
Note the license obligations that come with iFlow.



Contents

1 Modules Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Sediment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Salinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Two-parameter turbulence closures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 k− ε fitted turbulence closures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 k− ε fitted closures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1 Models and fitting conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Fitting to M2 tidal flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 General formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Approximating |u| for computations with general flows . . . . . . . . . . . . . . . . . 20
2.5 Ordering of velocity and depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Summary of relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22





1. Modules Reference

This chapter provides a short overview of all modules in the package analytical2DV and
the required input and expected output. The modules have been ordered into sections
for the purpose of providing structure to this chapter.

Explanation of terms and colours
Behind the input variables we will mention several data types. While some data types may
be obvious, some others are explained in the table below:

Space-separated num-
bers

real numbers separated by one or more spaces. Do not use
comma’s or other markers to separate the numbers.

Grid-conform array n-
dimensional

a numpy array with n (i.e. some number) or fewer (!) dimensions.
More dimensions than n is not allowed. All axes should be grid
conform. That means that the length of a dimension should either
be 1 or equal to the size of the corresponding grid axis. If n is larger
than the grid size, the length of this axis is free. Note that a single
number counts as a grid-conform array.

General n-dimensional either a grid-conform array or a numerical or analytical function.
In both cases they may n (i.e. some number) or fewer dimensions.

iFlow grid a grid variable with underlying subvariables as described in the
manual (Dijkstra, 2017)

The cells with input variables have been colour-coded to indicate whether the variable is
likely to be given in the input file, computed by another module or given in the configura-
tion file. By the very nature of iFlow this is only indicative and depends on the modules used.
As an example, almost any variable given in the input file may be used as a variable in a
sensitivity analysis. It then becomes an input parameter of the sensitivity analysis module in
the input file. The sensitivity analysis module delivers it to the module that uses this variable.
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Likely a parameter in the input file
Either in the input file or from another module
Likely a parameter computed by another module
Likely a constant in the configuration file src.config

1.1 Geometry
1.1.1 Geometry2DV

The model domain is a two-dimensional width-averaged area as sketched in Figure 1.1.
The width can be supplied in along-channel direction to account for changes of the width
over the domain. The length of the estuary between the seaward boundary x = 0 and the
landward boundary is denoted by L and can be freely chosen. The width, B, and depth,
H, can be provided as arbitrary smooth functions of x. The depth H is relative to the mean
sea level (MSL) defined at z = 0.
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(b) Side view

Figure 1.1: Model domain. The model is two-dimensional in along-channel (x) and vertical
(z) direction and is width-averaged. The depth and width are allowed to vary smoothly
with x.

The surface level relative to z = 0 is expressed as R+ζ and is computed by the model. By
default the reference level R = 0 and ζ is equal to the surface level. The use of a non-zero
reference level is however required if the river bed is above MSL over part of the domain.
The depth H is then negative, which poses a problem in further calculations. In this case
iFlow computes the reference level R as a quick estimate of the mean surface level and
ensures that H +R is always positive.

The module Geometry2DV sets the length L, width B and depth H (without reference level
R). The input for B and H is best illustrated using an example

� Code sample 1.1

1 module analytical2DV.Geometry2DV

2 L 160000

3 B0 type functions.ExpRationalFunc

4 C1 -0.027e-3 1.9

5 C2 5.0e-11 -9.2e-6 1.0

6 H0 type functions.Polynomial

7 C -2.9e-24 1.4e-18 -2.4e-13 1.7e-8 -5.2e-4 15.3

�

The width and depth are set by functions. Below the function specification follow the
arguments for that function, preceded by at least one space or tab. Functions are
specified in this input as if they are modules, in the form [package name].[function name].
Standard functions in iFlow are specified in the package functions. These functions, for a
variable x ∈ [0,L], are
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Constant Constant function f =C0
input C0: number

Exponential Exponential function f =C0e−x/Lc

input C0: number
Lc: number

ExpRationalFunc Exponent of a ratio of two polynomials f =
1000epolyval(C1,x)/polyval(C2,x)

input C1: Space-separated numbers representing polynomial co-
efficients
C2: Space-separated numbers representing polynomial co-
efficients

HyperbolicTangent Hyperbolic tangent function f =C0+C1tanh
( x−xc

xl

)
input C0: Number

C1: Number
xc: Number
xl: Number

Linear Linear function f =C0 L−x
L +CL x

L
input C0: Number

CL: Number

Polynomial Polynomial function f = polyval(C,x)
input C: Space-separated numbers representing polynomial coef-

ficients

PolynomialLinear Combination of a polynomial and linear function. The
linear function starts for x > XL at the same level
of the polynomial function there and with the same
slope (i.e. continuous and once differentiable): f ={

polyval(C,x) if x < XL
polyval(C,XL)+polyder(C,XL)(x−XL) if x > XL

input C: Space-separated numbers representing polynomial coef-
ficients
XL: Number

Although momentarily not included in iFlow, one can easily construct a function that
retrieves numerical data of the depth or width from a file. This allows Geometry2DV to
work with numerical data as well.

Module reference table:

Type Normal
Submodules None
Input L Number. Length of the system (in m).

B0 Function. Width, see example above.

H0 Function. Depth measured as the distance between the zero-
reference (i.e. mean water level at the mouth) and the bed. See
example input above

Output L Number. Length of the system (in m).

B0 Function. Width, see example above.
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1.2 Sediment

1.2.1 SedDynamicLead

Leading-order sediment model, see Chapter ??.

Type Normal
Submodules erosion Resuspension of sediment by the flow.
Input ws General 3-dimensional. Leading-order fall velocity (in m/s).

u0 General 3-dimensional. Leading-order horizontal velocity (in m/s).

Av General 3-dimensional. Leading-order vertical eddy viscosity (in
m2/s).

grid iFlow grid.

sigma_rho General 2-dimensional. Prandtl-Schmidt number to convert the
vertical eddy viscosity to a vertical eddy diffusivity as Kν = Aν

σrho .

G Number. Acceleration of gravity (in m/s2).

OMEGA Number. Angular frequency of the slowest considered tidal fre-
quency (standard M2).

RHO0 Number. Reference density of water (in kg/m3).

DS Number. Typical sediment diameter (in m).
Output hatc0, a Array 3-dimensional. Leading-order sediment concentration, di-

vided by the availability a (in kg/m3). NB. this output variable
consists of a main index hatc0 and sub-index a.

1.2.2 SedDynamicFirst

First-order sediment model, see Chapter ??.

Type Normal
Submodules erosion Resuspension of sediment by the flow.

sedadv Horizontal advection of sediment.

noflux Correction to the sediment concentration due to variations of the
water level.

fallvel Effects of first-order changes to the fall velocity.

mixing Effects of first-order changes to the eddy diffusivity.
Input Same as SedDynamicLead

hatc0, a Only for submodules sedadv, noflux, fallvel, mixing

Leading-order sediment concentration, divided by the availability
a (in kg/m3).

w0 Only for submodules sedadv

Leading-order vertical velocity (in m/s).

ws1 Only for submodules fallvel

First-order fall velocity (in m/s).

Av1 Only for submodules mixing

First-order eddy viscosity (in m2/s).
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u1 Only for submodules erosion

First-order horizontal velocity (in m/s).

zeta0 Only for submodules noflux

Leading-order water level elevation (in m).
Output hatc1, a

hatc1, ax

Array 3-dimensional. First-order sediment concentration in two
parts. One part divided by the availability a, the other part divided
by ax (in kg/m3). The concentration is retrieved as c1 = ĉ1

aa+ ĉ1
ax ax.

NB. this output variable consists of a main index hatc1 and sub-
indices a and ax.

1.2.3 SedDynamicSecond

Second-order sediment model, see Chapter ??.

Type Normal
Submodules erosion Resuspension of sediment by the flow.
Input Same as SedDynamicLead, except for u0

u1 General 3-dimensional. First-order horizontal velocity (in m/s).
Output hatc2, a Array 3-dimensional. Second-order sediment concentration by

river-induced resuspension, divided by the availability a (in kg/m3).
NB. this output variable consists of a main index hatc2 and sub-
index a.

1.2.4 StaticAvailability

Model for the water-bed exchange of sediment, resulting in the sediment availability, see
Chapter ??.

Type Normal
Submodules None
Input Kh General 1-dimensional. Horizontal eddy diffusivity.

sedbc String. Type of boundary condition. Currently allows for astar and
csea (see below).

@sedbc Number. If sedbc equals astar, use the domain-average availability
a∗ as input (dimensionless). Else use the depth-averaged subtidal
concentration csea at the open boundary (in kg/m3).

B General 1-dimensional. Width (in m).

zeta0 General 3-dimensional. Leading-order water elevation (in m/s).

u0 General 3-dimensional. Leading-order horizontal velocity (in m/s).

u1 General 3-dimensional. First-order horizontal velocity (in m/s).

hatc0, a,
hatc1, a,
hatc1, ax,
hatc2, a

General 3-dimensional. Scaled sediment concentrations, see out-
put of SedDynamicLead, SedDynamicFirst, SedDynamicSecond.

grid iFlow grid.
Output a Array 1-dimensional. Sediment availability (dimensionless).
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c0 Array 3-dimensional. Leading-order sediment concentration (in
kg/m3).

c1 Array 3-dimensional. First-order sediment concentration (in kg/m3).

c2 Array 3-dimensional. Second-order sediment concentration due
to rivder-induced resuspension (in kg/m3).

1.3 Salinity

1.3.1 SaltExponential

Diagnostic (i.e. prescribed) along-channel salinity profile. The vertical is assumed to be
fully mixed and the signal is assumed not to vary over the tidal time scale. The salinity
profile follows an exponential profile of the form

s0 = ssea exp
(
− x

Ls

)
. (1.1)

Type Normal
Submodules None
Input ssea Number. Salinity (in psu) at the seaward boundary x = 0.

Ls Number. Length-scale for salinity decay (in metres).

L Number. Length of the system (in metres). Value is output of the
geometry module, but can also be prescribed in the input file.

Output s0 Analytical function 1-dimensional. Leading-order salinity profile in
x-direction.

1.3.2 SaltHyperbolicTangent

Diagnostic (i.e. prescribed) along-channel salinity profile. The vertical is assumed to be
fully mixed and the signal is assumed not to vary over the tidal time scale. The salinity
profile follows a hyperbolic tangent profile of the form (see also Warner et al. (2005); Talke
et al. (2009))

s =
ssea

2

(
1− tanh

(
x− xc

xL

))
(1.2)

Type Normal
Submodules None
Input ssea Number. Salinity (in psu) at the seaward boundary x = 0.

xc Number. Length-scale (in metres). Denotes the position of the
salinity value ssea

2 .

xl Number. Length-scale (in metres). Denotes the width of the salinity
profile.

L Number. Length of the system (in metres). Value is output of the
geometry module, but can also be prescribed in the input file.

Output s0 Analytical function 1-dimensional. Leading-order salinity profile in
x-direction.
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1.4 Two-parameter turbulence closures
The turbulence models compute the eddy viscosity and a roughness parameter belonging
to the relevant boundary condition for the momentum equation.

1.4.1 Uniform

Eddy viscosity with uniform value in the vertical direction. The fitting boundary condition to
the momentum equation is the partial slip condition. The eddy viscosity and partial slip
roughness parameter can vary with the along-channel dimension as

Aν(x, f ) = Aν 0( f )
(

H(x)+R(x)
H(0)

)m

,

s f (x) = s f ,0

(
H(x)+R(x)

H(0)

)n

The input Aν 0( f ) is allowed to be a function of time via the frequency dimension.

Type Normal
Submodules None
Input Av0amp Space-separated numbers. Leading-order reference eddy viscos-

ity amplitude |Aν 0| (in m2/s). The first value corresponds to subtidal.
The second value corresponds to the frequency with angular fre-
quency ω (standard M2 tide). The third value corresponds angular
frequency 2ω (standard M4) etc. The number of values should
be smaller than or equal to the maximum resolved frequency (i.e.
fmax+1 in the grid).

Av0phase Space-separated numbers. Leading-order reference eddy vis-
cosity phase φ(Aν 0) (in deg). Input has the same structure as the
amplitude. Note that the first element should equal zero.

sf0 Number. Subtidal reference partial slip parameter s f ,0.

m Number. Depth-dependency parameter for Aν , see equations.

n Number. Depth-dependency parameter for s f , see equations.

grid iFlow grid.
Output Av Function 3-dimensional. Leading-order eddy viscosity (in m2/s).

Function of x and f (length 1 in z dimension).

Roughness Function 1-dimensional. Partial slip parameter s f (in m/s).

BottomBC String equal to 'PartialSlip'. Indicates bottom boundary condi-
tion for the momentum equation.

1.4.2 Parabolic

Eddy viscosity with uniform value in the vertical direction. The fitting boundary condition to
the momentum equation is the partial slip condition. The eddy viscosity and partial slip
roughness parameter can vary with the along-channel dimension as

Aν(x, f ) = Aν 0( f )(z∗s + ẑ)(1+ z∗0− ẑ)
(

H(x)+R(x)
H(0)

)m

,

z∗0(x) = z∗00

(
H(x)+R(x)

H(0)

)n

,
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where ẑ is a dimensionless vertical axis between 0 (surface) and 1 (bed), z∗0 is a dimensionless
bottom roughness equal to z0(x)/H(x) and z∗s is a dimensionless surface roughness such
that the subtidal eddy viscosity at the surface equals 10−6 m2/s. The input Aν 0( f ) is allowed
to be a function of time via the frequency dimension and has dimension m2/s.

Type Normal
Submodules None
Input Av0amp Space-separated numbers. Leading-order reference eddy viscos-

ity amplitude |Aν 0| (in m2/s), see Uniform module.

Av0phase Space-separated numbers. Leading-order reference eddy viscos-
ity phase φ(Aν 0) (in deg), see Uniform module.

z0* Number. Subtidal reference dimensionless roughness height z∗00.

m Number. Depth-dependency parameter for Aν , see equations.

n Number. Depth-dependency parameter for z∗0, see equations.

grid iFlow grid.
Output Av Function 3-dimensional. Leading-order eddy viscosity (in m2/s).

Function of x, z and f .

Roughness Function 1-dimensional. Roughness height z0 (N.B. not dimension-
less) (in m).

BottomBC String equal to 'NoSlip'. Indicates bottom boundary condition for
the momentum equation.

Output

1.5 k− ε fitted turbulence closures
Set of turbulence closures that consist of algebraic equations that are fitted to the results
of a k− ε turbulence model. See also Chapter 2. Summarising the relations. The model
uses the relation

Av = 0.49s f (H +R+ζ ),

if roughnessParameter is set to 'sf0' and uses

Av =
0.10
0.636

κ
−2CD|u|(H +R+ζ ), (1.3)

s f =
0.22
0.636

κ
−2CD|u|, (1.4)

if roughnessParameter is set to 'z0*'. Here κ is the Von Karman constant of 0.4 and CD equals

CD =

(
U∗
U

)2

= κ
2
[
(1+ z∗0) ln

(
1
z∗0

+1
)
−1
]−2

.

The modules KEFittedLead, KEFittedFirst and KEFittedTruncated use these equations in a
scaling approach, while the module KEFittedTruncated uses a truncation approach.

The roughness parameter r, i.e. s f or z∗0, may vary with x related to the depth according to

r(x) = r0

(
H(x)+R(x)

H(0)

)n

.
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1.5.1 KEFittedLead

Leading-order of the above equations, i.e

A0
v = 0.49s f (H +R),

or

A0
v =

0.10
0.636

κ
−2CD|u|0(H +R),

s0
f =

0.22
0.636

κ
−2CD|u|0.

Type Iterative
Submodules None
InputInit roughnessParameter String. Indicates what roughness parameter to use. May

have values sf0 or z0*.

@roughnessParameter

i.e. sf0 or z0*
Number. Value of s f ,0 or z∗00.

n Number. Depth-dependency parameter for the roughness
parameter of choice, see above equations.

Avmin Number. Minimum value for the subtidal eddy viscosity (di-
vided by the depth). The actual subtidal eddy viscosity
equals the maximum of the computed Aν and Aν min(H +R).

lambda Number between 0 and 1. Fraction of time-dependency
to account for. A value λ = 0 eliminates all computed time-
dependency, while λ = 1 includes the full computed time-
dependency. Values between 0 and 1 indicate that the
computed time-dependence is only partially accounted
for.

referenceLevel Boolean, optional. Include a reference level computation
in the module. This allows for omitting the module Refer-
enceLevel, for a more optimised iteration loop.

ignoreSubmodule Space-separated strings. Names of submodules of the hydro-
dynamics (i.e. u) that may be ignored in the computation.
Only relevant to leading-order if z0* is used as roughness
parameter.

profile String. Vertical profile. Currently only uniform is allowed.

Q0, Q1 Numbers. Only required if referenceLevel equals True.
Leading- and first-order discharge (in m3/s). Both are re-
quired, but only the first-order discharge is only used if Q0 = 0.

H General 1-dimensional. Depth (in m).

B General 1-dimensional. Width (in m).

grid iFlow grid. Only required in initial run if referenceLevel equals
False.

G Number. Gravitational acceleration (in m/s2).
Input grid iFlow grid.

u0 General 3-dimensional. Leading-order horizontal flow veloc-
ity.
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Output Av Array 3-dimensional. Leading-order eddy viscosity (in m2/s).
Function of x and f (length 1 in z).

Roughness Array 1-dimensional. Roughness parameter, depending on
choice in input.

BottomBC String equal to 'PartialSlip'. Indicates bottom boundary
condition for the momentum equation.

1.5.2 KEFittedFirst

First-order of the above equations, i.e

A1
v = 0.49s f ζ

1,

or

A1
v =

0.10
0.636

κ
−2CD

(
|u|1(H +R)+ |u|0ζ

0) ,
s1

f =
0.22
0.636

κ
−2CD|u|1.

Type Iterative
Submodules None
InputInit Same as KEFittedLead, except for Avmin, ReferenceLevel, B, Q0 and

Q1.

u0 General 3-dimensional. Leading-order horizontal flow velocity.

grid iFlow grid.
Input zeta0 General 3-dimensional, length 1 in z direction. Leading-order water

level elevation (in m)

u1 General 3-dimensional. First-order horizontal flow velocity.
Output Av1 Array 3-dimensional. First-order eddy viscosity (in m2/s). Function

of x and f (length 1 in z).

Roughness1 Array 1-dimensional. First-order roughness parameter, depending
on choice in input.

1.5.3 KEFittedHigher

Higher-order (n > 1) of the above equations, i.e

An
v = 0.49s f ζ

n,

or

An
v =

0.10
0.636

κ
−2CD

(
n−1

∑
p=0

(
|u|nζ

n−1−p)+ |u|n(H +R)

)
,

sn
f =

0.22
0.636

κ
−2CD|u|n.

May be used in combination with module HigherOrderIterator.

Type Iterative
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Submodules None
InputInit Same as KEFittedFirst.

zeta0 General 3-dimensional, length 1 in z direction. Leading-order
water level elevation (in m)

u1 General 3-dimensional. First-order horizontal flow velocity.
Input maxOrder Integer. Maximum order. May be passed by the module

HigherOrderIterator.

maxOrder Integer. Current order. May be passed by the module High-
erOrderIterator

u+{0,@{maxOrder}+1} General 3-dimensional. Higher-order horizontal flow velocity.

zeta

+{0,@{maxOrder}+1}

General 3-dimensional, length 1 in z direction. Higher-order
water level elevation.

Output Av+{2,@{maxOrder}+1} Array 3-dimensional. Higher-order eddy viscosity (in m2/s).
Function of x and f (length 1 in z).

Roughness

+{2,@{maxOrder}+1}

Array 1-dimensional. Higher-order roughness parameter, de-
pending on choice in input.

1.5.4 KEFittedTruncated

Solve the equations in full up to order truncationOrder (inclusive).

Type Iterative
Submodules None
InputInit Same as KEFittedLead.

truncationOrder Integer. Truncate after this order (inclusive).
Input u+{0,

@{truncationOrder}+1}

General 3-dimensional. Horizontal flow velocity.

zeta+{0,

@{truncationOrder}+1}

General 3-dimensional, length 1 in z direction. Water level
elevation.

Output Av Array 3-dimensional. Leading-order eddy viscosity (in
m2/s). Function of x and f (length 1 in z).

Roughness Array 1-dimensional. Roughness parameter, depending
on choice in input.

BottomBC String equal to 'PartialSlip'. Indicates bottom boundary
condition for the momentum equation.





2. k− ε fitted closures

The k−ε turbulence model is the state-of-the-art for 1DV, 2DV or 3D models of estuaries. This
model is however highly non-linear and has only been tested in time-stepping methods.
Idealised modelling methods that solve for harmonic components are therefore not
directly compatible with the k− ε model. Instead, such idealised models often settle with
much simpler turbulence closures, where the eddy viscosity profile is typically assumed to
be either vertically uniform or parabolic. This assumption on the eddy viscosity profile is
probably not very restricting in cases of mild stratification. A more influential assumption
in these models concerns the lack of a relation to the depth or flow. Also, the simplified
turbulence closures typically depend on two fit-parameters. Often there is a band of
parameter values with more-or-less equivalently accurate results. This property threatens
to undermine the reliability of these turbulence models when it comes to modelling salt or
sediment.

The goal of the KEFitted turbulence models is to resolve the above identified problems of
idealised turbulence models concerning depth-flow-dependency and multiple equivalent
parameter setting. This is done by fitting the idealised uniform profiles to solutions of the
k− ε model. Here, we restrict our attention to barotropic flows. This fitting procedure is
done for a subtidal eddy viscosity only. Additionally the fitting procedure reduces the
number of fit parameters to one.

2.1 Models and fitting conditions

2.1.1 Models and parameters

The idealised models that will be considered assume a uniform eddy viscosity profile,
described as

Av(x,z) = Av,0(x),

which is accompanied by a partial-slip boundary condition for the momentum equation:

Avuz(x,−H) = s f (x)u(x,−H) (partial slip).
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The parameters in this model are thus Av,0(x) and s f (x). The time-dependence of Av,0 is
allowed to consist of harmonic components with a period equal to the M2 tide and its
overtides. The components of Av,0 will be denoted by Av,0n, where n = 0 corresponds to the
subtidal component, n = 1 to the M2, n = 2 to the M4 etc.

The idealised model is fitted to the k− ε model. This model can be described in abstract
notation and without buoyancy as

Av = f (uz,H,z0).

The fit is performed using the water column (i.e. 1DV) model as described by Dijkstra et al.
(2016). The model is forced by a prescribed depth-averaged velocity U with one or several
tidal components and a constant river discharge.

2.1.2 Fitting conditions

The idealised model is fitted to the k− ε model using fit conditions. The required number of
conditions depends on the number of parameters. Since we only consider a subtidal eddy
viscosity, the model has two parameters Av,0 and s f . These are obtained by matching the
amplitude and phase of the M2 tidal water level gradient ζx obtained using the simple
turbulence model to that obtained with the k− ε model. Other fit conditions one could
think of are the (subtidal) turbulent energy dissipation and the bed shear-stress. In Appendix
B we will show that these conditions are automatically satisfied when fitting the water level
gradients.

2.1.3 Regression

The k− ε model depends on the depth-averaged velocity amplitude U (through uz), the
depth H and the roughness height z0. This dependency is incorporated into the idealised
models by using a non-linear regression on the fitted results. From a combination of theory
and experimentation with different formulations for the regression, the following follows as
the best:

γ1U γ2

[(
1+

z0

H

)
ln
(

H
z0

+1
)
−1
]γ3

zγ4
0 Hγ5 .

Equivalently this can be written as

γ1U γ2
(
κ
−2CD

)γ3/2
zγ4

0 Hγ5 ,

where CD is a drag coefficient as specified by Burchard et al. (2011) as

CD = κ
2
[(

1+
z0

H

)
ln
(

H
z0

+1
)
−1
]−2

.

The parameters γn, n = 1, . . . ,5 are the regression parameters.

2.2 Fitting to M2 tidal flows
For the first case we impose a simple single constituent M2 flow. The models have been
tested with a wide range of the parameters U , z0 and H in order to have trustworthy results
for the regression. The tested parameter values are given below

M2 tide only U M2 0.2, 0.4, 0.6, 0.8, 1.0 m/s
z0 0.1, 0.01, 0.001, 0.0001, 0.00001 m
H 6, 8, 10, 12, 14, 16, 18, 20 m
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All permutations of settings are tested, so that there are 200 cases. The fitting conditions
have been applied to find the parameters Av,00 (i.e. only subtidal) and s f for each of the
200 parameter settings and forcing only by the M2 tide. A fit has been found for all of these
200 simulations. A non-linear regression is applied to the results of the fitted cases. Figure
2.1 shows the best regressive fit of Av,00 and s f .
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The fitted expressions read:

Av,0 = 0.09U1.1
[(

1+
z0

H

)
ln
(

H
z0

+1
)
−1
]−1.8

z0.053
0 H1.0,

s f = 0.20U0.98
[(

1+
z0

H

)
ln
(

H
z0

+1
)
−1
]−1.9

z−0.0011
0 H−0.040.

These fitting relations are simplified somewhat by rounding the powers. After rounding the
powers, the factor γ1 in front of the relation is refitted to arrive at the following simplified
relations:

Av,0 = 0.10U
[(

1+
z0

H

)
ln
(

H
z0

+1
)
−1
]−2

H, (2.1)

s f = 0.22U
[(

1+
z0

H

)
ln
(

H
z0

+1
)
−1
]−2

. (2.2)

Alternative to relating Av,0 and s f to z0 as done above, we can also eliminate z0 and relate
Av,0 to s f . Simply rewriting (2.1) and (2.2) yields Av,0 = 0.45s f H. However, a more accurate
result is found by making a new fit using s f in place of z0. The results are presented in Figure
2.2a and the regression formula below.

Av,0 = 0.60U0.16s1.1
f H1.1.

As the dependency on U is only weak, we choose to eliminate this dependency altogether.
We round the powers and fit the factor in front of the expression again to arrive at

Av,0 = 0.49s f H. (2.3)

This relation between Av,0 and s f is plotted in Figure 2.2b together. Even though the relation
is simple, it fits the data points quite well.
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2.3 General formulation
It is found that Av,0 can be expressed as

Av,0 = γ1UH
[(

1+
z0

H

)
ln
(

H
z0

+1
)
−1
]−2

.

This relation can be interpreted using scaling arguments and literature. A scaling of the
k− ε model (see Appendix A) reveals that the eddy viscosity should scale with |u∗|H, i.e.
with the absolute value of the bed friction velocity multiplied by the local depth. The
bed friction velocity can be related to the velocity through a shape function, which
depends on the roughness height and depth. Letting f (z0,H) be this shape factor, we
have Av ∼ |u|H f (z0,H).

The shape factor should follow from the relation between the depth-averaged velocity
and bed friction velocity. Such a relation follows from the logarithmic velocity profile
(Burchard et al., 2011)

CD =

(
U∗
U

)2

= κ
2
[(

1+
z0

H

)
ln
(

H
z0

+1
)
−1
]−2

.

Our results show that the absolute value |u∗|/|u| scales dominantly with
(U∗

U

)2
.

Following the scaling relation we will assume that the dependency on U can be gener-
alised to a dependence on |u|. Note that U and the subtidal part of |u| are related as
〈|u|〉 = 0.636U (where 〈·〉 denotes time-averaging) for a flow with only a single harmonic
components and no residual flow. Additionally, the eddy viscosity scales with the depth,
which is fixed at H in the water column module, but in the width-averaged model reads
H +R+ζ . We will thus write our result as

Av,0 =
γ1

0.636
κ
−2CD〈|u|(H +R+ζ )〉.

A similar relation was found for s f , with the general form

s f =
γ1

0.636
κ
−2CD〈|u|〉,

which is a form consistent with the derivation by Zimmerman (1982).

2.4 Approximating |u| for computations with general flows
The temporal variation of the eddy viscosity parameter Av,0 is generated by the absolute
value of the velocity times the depth |u|(H +R+ζ ), while the partial slip parameter scales
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with |u|. Using this notion, the model derived for pure M2 tidal flows can be extended to flows
with combined subtidal, M2, M4 and higher overtidal flows. These (sub)tidal components
will generate a signal of |u| and |u|(H +R+ζ ) that can be approximated using a subtidal
part and tidal components. Here we will only consider the subtidal components 〈|u|〉 and
〈|u|(H +R+ζ )〉, i.e. the subtidal value of |u| and |u|(H +R+ζ ) resulting from a combined
subtidal and multi-frequency tidal flow.

However, it is not directly clear how to derive the subtidal part of these variables. One way
would be to convert the harmonic components of the velocity and depth to a time series,
taking the absolute value and computing the mean. However, this is an indirect technique
inconsistent with the approach of using harmonic components and does not lead to
unambiguous results if ordering is used. Therefore we make a Chebyshev polynomial
expansion of |u|. This expansion yields, for the subtidal component,

〈|u|〉=
〈
a0 +a2u2 +a4u4 + . . .

〉
,

〈|u|(H +R+ζ )〉=
〈
(a0 +a2u2 +a4u4 + . . .)(H +R+ζ )

〉
,

where 〈·〉 denotes the tidal average and ai are coefficients that follow from de expansion
and depend on the number of components taken into account. In a demonstration
below we will take all components up to a4 into account. In this case the coefficient values
are 0.127, 1.527 and −0.679. The above expansion is helpful, because it is clear how to
compute the subtidal contribution of the product of two or more harmonic components
(using the NiFTy tool complexAmplitudeProduct). Additionally, the above expression can be
used to make an unambiguous ordering in the velocity (demonstrated below).

The results can be exemplified analytically for the combination of tidal M2 and river flow,
without other flow components. Let UM2 be the depth-averaged M2 velocity amplitude
and Uriv be the depth-averaged river velocity amplitude. Additionally let α be defined as

α =
Uriv

UM2

.

We then find for |u|

|u|0 =(1+α)UM2

(
a0 +a2

(
α

1+α

)2

+
1
2

a2

(
1

1+α

)2

+a4

(
α

1+α

)4

+
3
8

a4

(
1

1+α

)4

+
6
2

a4
α2

(1+α)4

)
.

This expression conveniently describes the magnitude of |u| in terms of the relative impor-
tance of the river flow. The limit values for the above expressions are

only tide (α = 0) only river (α = ∞)
|u|0 0.636UM2 Uriv

The above analytical expression is useful to

explore a deeper understanding of the effect a flow has on |u| and therefore on the
eddy viscosity and partial slip parameters via the turbulence model. Analyses like this can
also be done for combinations of two tidal flows with different frequencies. It is outside
the scope of this manual to further extend this analysis. Within the KEFitted modules, the
Chebyshev expansion is used directly up to the a8 component.

2.5 Ordering of velocity and depth
The fitted turbulence model depends on the velocity and depth, which are order quantities
in the standard iFlow hydrodynamic modules. The KEFitted turbulence models come in two
forms: ordered (KEFittedLead, KEFittedFirst, KEFittedHigher), which use the ordering of the
velocity and depth to compute an ordered eddy viscosity and partial slip parameter,
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and truncated (KEFittedTruncated), which adds all velocity and depth contribution and
computes a single eddy viscosity and partial slip parameter.

The velocity enters the model through the absolute value. The ordering of this is computed
through the Chebyshev polynomial approximation outlined above. For the leading and
first orders (denoted by superscripts) this yields

|u|00 = a0 +a2 (u0)2
+a4 (u0)4

+ . . . ,

|u|10 = 2a2u0u1 +4a4 (u0)3
u1 + . . . .

An automated script allows the ordered KEFitted models to compute all components up
to a8 and up to any order.

The ordering of the depth dependence is through a factor H+R+ζ and is simply governed
by the ordering of ζ . Since ζ 0 is regarded as an order ε contribution relative to H +R, the
leading-order depth equals H +R, the first-order depth equals H +R+ζ 0 etcetera.

2.6 Summary of relations
The uniform model with partial slip boundary condition is only applied for an eddy viscosity
and partial slip parameter that is constant in time. We find the following expressions for the
parameters Av,0 and s f :

Av,0 =
0.10

0.636
κ
−2CD 〈|u|(H +R+ζ )〉 , (2.4)

s f =
0.22

0.636
κ
−2CD 〈|u|〉 . (2.5)

Here

CD =

(
U∗
U

)2

= κ
2
[(

1+
z0

H

)
ln
(

H
z0

+1
)
−1
]−2

.

The two parameters can also be related to one-another, yielding

Av,0 = 0.49s f (H +R+ζ ). (2.6)

This relation produces a good fit with the data from the k− ε and is considered to be
accurate for the whole range of roughness values that might be encountered in estu-
aries that are not or only weakly stratified. The dependencies on |u| and H +R+ ζ are
resolved either through ordering (KEFittedLead, KEFittedFirst, KEFittedHigher) or trunca-
tion (KEFittedTruncated). The subtidal part of |u| and |u|(H +R+ ζ ) is computed through
Chebyshev polynomials.
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