Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
Volume 10, issue 8
Geosci. Model Dev., 10, 3001–3023, 2017
https://doi.org/10.5194/gmd-10-3001-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 10, 3001–3023, 2017
https://doi.org/10.5194/gmd-10-3001-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 10 Aug 2017

Model description paper | 10 Aug 2017

lumpR 2.0.0: an R package facilitating landscape discretisation for hillslope-based hydrological models

Tobias Pilz et al.
Related authors  
Seasonal drought prediction for semiarid northeast Brazil: what is the added value of a process-based hydrological model?
Tobias Pilz, José Miguel Delgado, Sebastian Voss, Klaus Vormoor, Till Francke, Alexandre Cunha Costa, Eduardo Martins, and Axel Bronstert
Hydrol. Earth Syst. Sci., 23, 1951–1971, https://doi.org/10.5194/hess-23-1951-2019,https://doi.org/10.5194/hess-23-1951-2019, 2019
Short summary
Related subject area  
Hydrology
MELPF version 1: Modeling Error Learning based Post-Processor Framework for Hydrologic Models Accuracy Improvement
Rui Wu, Lei Yang, Chao Chen, Sajjad Ahmad, Sergiu M. Dascalu, and Frederick C. Harris Jr.
Geosci. Model Dev., 12, 4115–4131, https://doi.org/10.5194/gmd-12-4115-2019,https://doi.org/10.5194/gmd-12-4115-2019, 2019
Short summary
Beo v1.0: numerical model of heat flow and low-temperature thermochronology in hydrothermal systems
Elco Luijendijk
Geosci. Model Dev., 12, 4061–4073, https://doi.org/10.5194/gmd-12-4061-2019,https://doi.org/10.5194/gmd-12-4061-2019, 2019
Short summary
A parallel workflow implementation for PEST version 13.6 in high-performance computing for WRF-Hydro version 5.0: a case study over the midwestern United States
Jiali Wang, Cheng Wang, Vishwas Rao, Andrew Orr, Eugene Yan, and Rao Kotamarthi
Geosci. Model Dev., 12, 3523–3539, https://doi.org/10.5194/gmd-12-3523-2019,https://doi.org/10.5194/gmd-12-3523-2019, 2019
Short summary
r.sim.terrain 1.0: a landscape evolution model with dynamic hydrology
Brendan Alexander Harmon, Helena Mitasova, Anna Petrasova, and Vaclav Petras
Geosci. Model Dev., 12, 2837–2854, https://doi.org/10.5194/gmd-12-2837-2019,https://doi.org/10.5194/gmd-12-2837-2019, 2019
Short summary
The probabilistic hydrological MARCSHYDRO (the MARkov Chain System) model: its structure and core version 0.2
Elena Shevnina and Andrey Silaev
Geosci. Model Dev., 12, 2767–2780, https://doi.org/10.5194/gmd-12-2767-2019,https://doi.org/10.5194/gmd-12-2767-2019, 2019
Short summary
Cited articles  
Ajami, H., Khan, U., Tuteja, N. K., and Sharma, A.: Development of a computationally efficient semi-distributed hydrologic modeling application for soil moisture, lateral flow and runoff simulation, Environ. Modell. Softw., 85, 319–331, https://doi.org/10.1016/j.envsoft.2016.09.002, 2016.
Band, L. E., Tague, C. L., Brun, S. E., Tenenbaum, D. E., and Fernandes, R. A.: Modelling Watersheds as Spatial Object Hierarchies: Structure and Dynamics, Trans. GIS, 4, 181–196, https://doi.org/10.1111/1467-9671.00048, 2000.
Beven, K.: Linking parameters across scales: Subgrid parameterizations and scale dependent hydrological models, Hydrol. Process., 9, 507–525, https://doi.org/10.1002/hyp.3360090504, 1995.
Beven, K.: Searching for the Holy Grail of scientific hydrology: Qt = (S, R, Δt)A as closure, Hydrol. Earth Syst. Sci., 10, 609–618, https://doi.org/10.5194/hess-10-609-2006, 2006.
Beven, K., Calver, A., and Morris, E. M.: The Institute of Hydrology distributed model, IH Report 98, Institute of Hydrology, Wallingford, UK, 1987.
Publications Copernicus
Download
Short summary
To discretise and transfer a landscape into a hydrological model, many different algorithms and software implementations exist. These are, however, often model specific, commercial, and allow for only a limited workflow automation. Overcoming these limitations, the software package lumpR was developed. It employs an hillslope-based discretisation algorithm directed at large-scale application. The software is demonstrated in a case study and crucial discretisation parameters are investigated.
To discretise and transfer a landscape into a hydrological model, many different algorithms and...
Citation