Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 10, issue 8 | Copyright
Geosci. Model Dev., 10, 3145-3165, 2017
https://doi.org/10.5194/gmd-10-3145-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 28 Aug 2017

Model description paper | 28 Aug 2017

MicroHH 1.0: a computational fluid dynamics code for direct numerical simulation and large-eddy simulation of atmospheric boundary layer flows

Chiel C. van Heerwaarden et al.
Related authors
Regional co-variability of spatial and temporal soil moisture–precipitation coupling in North Africa: an observational perspective
Irina Y. Petrova, Chiel C. van Heerwaarden, Cathy Hohenegger, and Françoise Guichard
Hydrol. Earth Syst. Sci., 22, 3275-3294, https://doi.org/10.5194/hess-22-3275-2018,https://doi.org/10.5194/hess-22-3275-2018, 2018
An evaluation of the importance of spatial resolution in a global climate and hydrological model based on the Rhine and Mississippi basin
Imme Benedict, Chiel C. van Heerwaarden, Albrecht H. Weerts, and Wilco Hazeleger
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-473,https://doi.org/10.5194/hess-2017-473, 2017
Revised manuscript not accepted
Related subject area
Atmospheric Sciences
Intraseasonal summer rainfall variability over China in the MetUM GA6 and GC2 configurations
Claudia Christine Stephan, Nicholas P. Klingaman, Pier Luigi Vidale, Andrew G. Turner, Marie-Estelle Demory, and Liang Guo
Geosci. Model Dev., 11, 3215-3233, https://doi.org/10.5194/gmd-11-3215-2018,https://doi.org/10.5194/gmd-11-3215-2018, 2018
Age of air as a diagnostic for transport timescales in global models
Maarten Krol, Marco de Bruine, Lars Killaars, Huug Ouwersloot, Andrea Pozzer, Yi Yin, Frederic Chevallier, Philippe Bousquet, Prabir Patra, Dmitry Belikov, Shamil Maksyutov, Sandip Dhomse, Wuhu Feng, and Martyn P. Chipperfield
Geosci. Model Dev., 11, 3109-3130, https://doi.org/10.5194/gmd-11-3109-2018,https://doi.org/10.5194/gmd-11-3109-2018, 2018
Quasi-Newton methods for atmospheric chemistry simulations: implementation in UKCA UM vn10.8
Emre Esentürk, Nathan Luke Abraham, Scott Archer-Nicholls, Christina Mitsakou, Paul Griffiths, Alex Archibald, and John Pyle
Geosci. Model Dev., 11, 3089-3108, https://doi.org/10.5194/gmd-11-3089-2018,https://doi.org/10.5194/gmd-11-3089-2018, 2018
GEOS-Chem High Performance (GCHP v11-02c): a next-generation implementation of the GEOS-Chem chemical transport model for massively parallel applications
Sebastian D. Eastham, Michael S. Long, Christoph A. Keller, Elizabeth Lundgren, Robert M. Yantosca, Jiawei Zhuang, Chi Li, Colin J. Lee, Matthew Yannetti, Benjamin M. Auer, Thomas L. Clune, Jules Kouatchou, William M. Putman, Matthew A. Thompson, Atanas L. Trayanov, Andrea M. Molod, Randall V. Martin, and Daniel J. Jacob
Geosci. Model Dev., 11, 2941-2953, https://doi.org/10.5194/gmd-11-2941-2018,https://doi.org/10.5194/gmd-11-2941-2018, 2018
Adding four-dimensional data assimilation by analysis nudging to the Model for Prediction Across Scales – Atmosphere (version 4.0)
Orren Russell Bullock Jr., Hosein Foroutan, Robert C. Gilliam, and Jerold A. Herwehe
Geosci. Model Dev., 11, 2897-2922, https://doi.org/10.5194/gmd-11-2897-2018,https://doi.org/10.5194/gmd-11-2897-2018, 2018
Cited articles
Bannon, P. R.: On the anelastic approximation for a compressible atmosphere, J. Atmos. Sci., 53, 3618–3628, 1996.
Beare, R. J., Macvean, M. K., Holtslag, A. A., Cuxart, J., Esau, I., Golaz, J. C., Jimenez, M. A., Khairoutdinov, M., Kosovic, B., Lewellen, D., and Lund, T. S.: An intercomparison of large-eddy simulations of the stable boundary layer, Bound.-Lay. Meteorol., 118, 247–272, 2006.
Betts, A. K.: Non-precipitating cumulus convection and its parameterization, Q. J. Roy. Meteor. Soc., 99, 178–196, 1973.
Boing, S. J.: The interaction of deep convective clouds and their environment, TU Delft, Delft University of Technology, the Netherlands, 2014.
Bou-Zeid, E., Meneveau, C., and Parlange, M.: A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows, Phys. Fluids, 17, 025105, https://doi.org/10.1063/1.1839152, 2005.
Publications Copernicus
Download
Short summary
MicroHH (www.microhh.org) is a new and open-source computational fluid dynamics code for the simulation of turbulent flows in the atmosphere. It is made to simulate atmospheric flows up to the finest detail levels at very high resolution. It has been designed from scratch in C++ in order to use a modern design that allows the code to run on more than 10 000 cores, as well as on a graphical processing unit.
MicroHH (www.microhh.org) is a new and open-source computational fluid dynamics code for the...
Citation
Share