Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 10, issue 9 | Copyright
Geosci. Model Dev., 10, 3207-3223, 2017
https://doi.org/10.5194/gmd-10-3207-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Review and perspective paper 01 Sep 2017

Review and perspective paper | 01 Sep 2017

Practice and philosophy of climate model tuning across six US modeling centers

Gavin A. Schmidt et al.
Related authors
Model dependence in multi-model climate ensembles: weighting, sub-selection and out-of-sample testing
Gab Abramowitz, Nadja Herger, Ethan Gutmann, Dorit Hammerling, Reto Knutti, Martin Leduc, Ruth Lorenz, Robert Pincus, and Gavin A. Schmidt
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2018-51,https://doi.org/10.5194/esd-2018-51, 2018
Manuscript under review for ESD
The PMIP4 contribution to CMIP6 – Part 1: Overview and over-arching analysis plan
Masa Kageyama, Pascale Braconnot, Sandy P. Harrison, Alan M. Haywood, Johann H. Jungclaus, Bette L. Otto-Bliesner, Jean-Yves Peterschmitt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Chris Brierley, Michel Crucifix, Aisling Dolan, Laura Fernandez-Donado, Hubertus Fischer, Peter O. Hopcroft, Ruza F. Ivanovic, Fabrice Lambert, Daniel J. Lunt, Natalie M. Mahowald, W. Richard Peltier, Steven J. Phipps, Didier M. Roche, Gavin A. Schmidt, Lev Tarasov, Paul J. Valdes, Qiong Zhang, and Tianjun Zhou
Geosci. Model Dev., 11, 1033-1057, https://doi.org/10.5194/gmd-11-1033-2018,https://doi.org/10.5194/gmd-11-1033-2018, 2018
Comparing proxy and model estimates of hydroclimate variability and change over the Common Era
PAGES Hydro2k Consortium
Clim. Past, 13, 1851-1900, https://doi.org/10.5194/cp-13-1851-2017,https://doi.org/10.5194/cp-13-1851-2017, 2017
The PMIP4 contribution to CMIP6 – Part 3: The last millennium, scientific objective, and experimental design for the PMIP4 past1000 simulations
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005-4033, https://doi.org/10.5194/gmd-10-4005-2017,https://doi.org/10.5194/gmd-10-4005-2017, 2017
A system of conservative regridding for ice–atmosphere coupling in a General Circulation Model (GCM)
R. Fischer, S. Nowicki, M. Kelley, and G. A. Schmidt
Geosci. Model Dev., 7, 883-907, https://doi.org/10.5194/gmd-7-883-2014,https://doi.org/10.5194/gmd-7-883-2014, 2014
Related subject area
Climate and Earth System Modeling
sympl (v. 0.4.0) and climt (v. 0.15.3) – towards a flexible framework for building model hierarchies in Python
Joy Merwin Monteiro, Jeremy McGibbon, and Rodrigo Caballero
Geosci. Model Dev., 11, 3781-3794, https://doi.org/10.5194/gmd-11-3781-2018,https://doi.org/10.5194/gmd-11-3781-2018, 2018
Requirements for a global data infrastructure in support of CMIP6
Venkatramani Balaji, Karl E. Taylor, Martin Juckes, Bryan N. Lawrence, Paul J. Durack, Michael Lautenschlager, Chris Blanton, Luca Cinquini, Sébastien Denvil, Mark Elkington, Francesca Guglielmo, Eric Guilyardi, David Hassell, Slava Kharin, Stefan Kindermann, Sergey Nikonov, Aparna Radhakrishnan, Martina Stockhause, Tobias Weigel, and Dean Williams
Geosci. Model Dev., 11, 3659-3680, https://doi.org/10.5194/gmd-11-3659-2018,https://doi.org/10.5194/gmd-11-3659-2018, 2018
Climate model configurations of the ECMWF Integrated Forecasting System (ECMWF-IFS cycle 43r1) for HighResMIP
Christopher D. Roberts, Retish Senan, Franco Molteni, Souhail Boussetta, Michael Mayer, and Sarah P. E. Keeley
Geosci. Model Dev., 11, 3681-3712, https://doi.org/10.5194/gmd-11-3681-2018,https://doi.org/10.5194/gmd-11-3681-2018, 2018
Using a virtual machine environment for developing, testing, and training for the UM-UKCA composition-climate model, using Unified Model version 10.9 and above
Nathan Luke Abraham, Alexander T. Archibald, Paul Cresswell, Sam Cusworth, Mohit Dalvi, David Matthews, Steven Wardle, and Stuart Whitehouse
Geosci. Model Dev., 11, 3647-3657, https://doi.org/10.5194/gmd-11-3647-2018,https://doi.org/10.5194/gmd-11-3647-2018, 2018
FAME (v1.0): a simple module to simulate the effect of planktonic foraminifer species-specific habitat on their oxygen isotopic content
Didier M. Roche, Claire Waelbroeck, Brett Metcalfe, and Thibaut Caley
Geosci. Model Dev., 11, 3587-3603, https://doi.org/10.5194/gmd-11-3587-2018,https://doi.org/10.5194/gmd-11-3587-2018, 2018
Cited articles
Alexander, M. and Dunkerton, T.: A spectral parameterization of mean-flow forcing due to breaking gravity waves, J. Atmos. Sci., 56, 4167–4182, 1999.
Allan, R. P., Liu, C., Loeb, N. G., Palmer, M. D., Roberts, M., Smith, D., and Vidale, P.-L.: Changes in global net radiative imbalance 1985–2012, Geophys. Res. Lett., 41, 5588–5597, https://doi.org/10.1002/2014gl060962, 2014.
Annan, J. D. and Hargreaves, J. C.: On the meaning of independence in climate science, Earth Syst. Dynam., 8, 211–224, https://doi.org/10.5194/esd-8-211-2017, 2017.
Benedict, J., Maloney, E., Sobel, A., Frierson, D., and Donner, L.: Tropical intraseasonal variability in Version 3 of the GFDL atmosphere model, J. Climate, 26, 426–449, https://doi.org/10.1175/JCLI-D-12-00103.1, 2013.
Publications Copernicus
Download
Short summary
The development of coupled ocean atmosphere climate models is a complex process that inevitably includes multiple calibration steps (sometimes called tuning). Tuning uses degrees of freedom allowed by uncertainties in model approximations to modify parameters to make the simulation better align with some selected observed target(s). We describe how these tuning targets, parameters, and philosophy vary across six US modeling centers in order to increase the transparency of the practice.
The development of coupled ocean atmosphere climate models is a complex process that inevitably...
Citation
Share