Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
Volume 10, issue 9
Geosci. Model Dev., 10, 3309–3327, 2017
https://doi.org/10.5194/gmd-10-3309-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 10, 3309–3327, 2017
https://doi.org/10.5194/gmd-10-3309-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 08 Sep 2017

Model description paper | 08 Sep 2017

The Gravitational Process Path (GPP) model (v1.0) – a GIS-based simulation framework for gravitational processes

Volker Wichmann

Related authors

SIMULATING UNMANNED-AERIAL-VEHICLE BASED LASER SCANNING DATA FOR EFFICIENT MISSION PLANNING IN COMPLEX TERRAIN
M. Bremer, V. Wichmann, M. Rutzinger, T. Zieher, and J. Pfeiffer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 943–950, https://doi.org/10.5194/isprs-archives-XLII-2-W13-943-2019,https://doi.org/10.5194/isprs-archives-XLII-2-W13-943-2019, 2019
COMPARISON AND TIME SERIES ANALYSIS OF LANDSLIDE DISPLACEMENT MAPPED BY AIRBORNE, TERRESTRIAL AND UNMANNED AERIAL VEHICLE BASED PLATFORMS
J. Pfeiffer, T. Zieher, M. Rutzinger, M. Bremer, and V. Wichmann
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 421–428, https://doi.org/10.5194/isprs-annals-IV-2-W5-421-2019,https://doi.org/10.5194/isprs-annals-IV-2-W5-421-2019, 2019
ASSESSMENT OF LANDSLIDE-INDUCED DISPLACEMENT AND DEFORMATION OF ABOVE-GROUND OBJECTS USING UAV-BORNE AND AIRBORNE LASER SCANNING DATA
T. Zieher, M. Bremer, M. Rutzinger, J. Pfeiffer, P. Fritzmann, and V. Wichmann
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 461–467, https://doi.org/10.5194/isprs-annals-IV-2-W5-461-2019,https://doi.org/10.5194/isprs-annals-IV-2-W5-461-2019, 2019
System for Automated Geoscientific Analyses (SAGA) v. 2.1.4
O. Conrad, B. Bechtel, M. Bock, H. Dietrich, E. Fischer, L. Gerlitz, J. Wehberg, V. Wichmann, and J. Böhner
Geosci. Model Dev., 8, 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015,https://doi.org/10.5194/gmd-8-1991-2015, 2015
Short summary

Related subject area

Climate and Earth System Modeling
Parallel I∕O in Flexible Modelling System (FMS) and Modular Ocean Model 5 (MOM5)
Rui Yang, Marshall Ward, and Ben Evans
Geosci. Model Dev., 13, 1885–1902, https://doi.org/10.5194/gmd-13-1885-2020,https://doi.org/10.5194/gmd-13-1885-2020, 2020
Short summary
COSMO-BEP-Tree v1.0: a coupled urban climate model with explicit representation of street trees
Gianluca Mussetti, Dominik Brunner, Stephan Henne, Jonas Allegrini, E. Scott Krayenhoff, Sebastian Schubert, Christian Feigenwinter, Roland Vogt, Andreas Wicki, and Jan Carmeliet
Geosci. Model Dev., 13, 1685–1710, https://doi.org/10.5194/gmd-13-1685-2020,https://doi.org/10.5194/gmd-13-1685-2020, 2020
Short summary
Statistical downscaling with the downscaleR package (v3.1.0): contribution to the VALUE intercomparison experiment
Joaquín Bedia, Jorge Baño-Medina, Mikel N. Legasa, Maialen Iturbide, Rodrigo Manzanas, Sixto Herrera, Ana Casanueva, Daniel San-Martín, Antonio S. Cofiño, and José Manuel Gutiérrez
Geosci. Model Dev., 13, 1711–1735, https://doi.org/10.5194/gmd-13-1711-2020,https://doi.org/10.5194/gmd-13-1711-2020, 2020
Short summary
Lower boundary conditions in land surface models – effects on the permafrost and the carbon pools: a case study with CLM4.5
Ignacio Hermoso de Mendoza, Hugo Beltrami, Andrew H. MacDougall, and Jean-Claude Mareschal
Geosci. Model Dev., 13, 1663–1683, https://doi.org/10.5194/gmd-13-1663-2020,https://doi.org/10.5194/gmd-13-1663-2020, 2020
Short summary
Simulating coupled surface–subsurface flows with ParFlow v3.5.0: capabilities, applications, and ongoing development of an open-source, massively parallel, integrated hydrologic model
Benjamin N. O. Kuffour, Nicholas B. Engdahl, Carol S. Woodward, Laura E. Condon, Stefan Kollet, and Reed M. Maxwell
Geosci. Model Dev., 13, 1373–1397, https://doi.org/10.5194/gmd-13-1373-2020,https://doi.org/10.5194/gmd-13-1373-2020, 2020
Short summary

Cited articles

Aleotti, P. and Chowdhury, R.: Landslide hazard assessment: summary review and new perspectives, B. Eng. Geol. Environ., 85, 21–44, 1999.
Broilli, L.: Ein Felssturz im Großversuch, Rock Mech., 3, 69–78, 1974.
Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V., and Reichenbach, P.: GIS Techniques and Statistical-Models in Evaluating Landslide Hazard, Earth Surf. Proc. Land, 16, 427–445, 1991.
Clerici, A. and Perego, S.: Simulation of the Parma River blockage by the Corniglio landslide (Northern Italy), Geomorphology, 33, 1–23, 2000.
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., and Böhner, J.: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015, 2015.
Publications Copernicus
Download
Short summary
The GPP model can be used to simulate the process path and run-out area of gravitational processes based on a digital terrain model. By providing several modelling approaches, the tool can be configured for different processes such as rockfall, debris flows or snow avalanches. The tool can be applied to regional-scale studies such as natural hazard susceptibility mapping. It is implemented as tool for SAGA GIS and has been released as open source.
The GPP model can be used to simulate the process path and run-out area of gravitational...
Citation