Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
Volume 10, issue 9
Geosci. Model Dev., 10, 3329–3357, 2017
https://doi.org/10.5194/gmd-10-3329-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental...

Geosci. Model Dev., 10, 3329–3357, 2017
https://doi.org/10.5194/gmd-10-3329-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model experiment description paper 11 Sep 2017

Model experiment description paper | 11 Sep 2017

Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015)

Margreet J. E. van Marle et al.
Related authors  
Gridded Emissions for CMIP6
Leyang Feng, Steve J Smith, Caleb Braun, Monica Crippa, Matthew J. Gidden, Rachel Hoesly, Zbigniew Klimont, Margreet van Marle, Maarten van den Berg, and Guido R. van der Werf
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-195,https://doi.org/10.5194/gmd-2019-195, 2019
Manuscript under review for GMD
Short summary
The impacts of recent drought on fire, forest loss, and regional smoke emissions in lowland Bolivia
Joshua P. Heyer, Mitchell J. Power, Robert D. Field, and Margreet J. E. van Marle
Biogeosciences, 15, 4317–4331, https://doi.org/10.5194/bg-15-4317-2018,https://doi.org/10.5194/bg-15-4317-2018, 2018
Short summary
Global fire emissions estimates during 1997–2016
Guido R. van der Werf, James T. Randerson, Louis Giglio, Thijs T. van Leeuwen, Yang Chen, Brendan M. Rogers, Mingquan Mu, Margreet J. E. van Marle, Douglas C. Morton, G. James Collatz, Robert J. Yokelson, and Prasad S. Kasibhatla
Earth Syst. Sci. Data, 9, 697–720, https://doi.org/10.5194/essd-9-697-2017,https://doi.org/10.5194/essd-9-697-2017, 2017
Short summary
Annual South American forest loss estimates based on passive microwave remote sensing (1990–2010)
M. J. E. van Marle, G. R. van der Werf, R. A. M. de Jeu, and Y. Y. Liu
Biogeosciences, 13, 609–624, https://doi.org/10.5194/bg-13-609-2016,https://doi.org/10.5194/bg-13-609-2016, 2016
Short summary
Related subject area  
Atmospheric Sciences
A radar reflectivity operator with ice-phase hydrometeors for variational data assimilation (version 1.0) and its evaluation with real radar data
Shizhang Wang and Zhiquan Liu
Geosci. Model Dev., 12, 4031–4051, https://doi.org/10.5194/gmd-12-4031-2019,https://doi.org/10.5194/gmd-12-4031-2019, 2019
Short summary
Evaluation of WRF-DART (ARW v3.9.1.1 and DART Manhattan release) multiphase cloud water path assimilation for short-term solar irradiance forecasting in a tropical environment
Frederik Kurzrock, Hannah Nguyen, Jerome Sauer, Fabrice Chane Ming, Sylvain Cros, William L. Smith Jr., Patrick Minnis, Rabindra Palikonda, Thomas A. Jones, Caroline Lallemand, Laurent Linguet, and Gilles Lajoie
Geosci. Model Dev., 12, 3939–3954, https://doi.org/10.5194/gmd-12-3939-2019,https://doi.org/10.5194/gmd-12-3939-2019, 2019
Short summary
Improved tropospheric and stratospheric sulfur cycle in the aerosol–chemistry–climate model SOCOL-AERv2
Aryeh Feinberg, Timofei Sukhodolov, Bei-Ping Luo, Eugene Rozanov, Lenny H. E. Winkel, Thomas Peter, and Andrea Stenke
Geosci. Model Dev., 12, 3863–3887, https://doi.org/10.5194/gmd-12-3863-2019,https://doi.org/10.5194/gmd-12-3863-2019, 2019
Short summary
Improved methodologies for Earth system modelling of atmospheric soluble iron and observation comparisons using the Mechanism of Intermediate complexity for Modelling Iron (MIMI v1.0)
Douglas S. Hamilton, Rachel A. Scanza, Yan Feng, Joseph Guinness, Jasper F. Kok, Longlei Li, Xiaohong Liu, Sagar D. Rathod, Jessica S. Wan, Mingxuan Wu, and Natalie M. Mahowald
Geosci. Model Dev., 12, 3835–3862, https://doi.org/10.5194/gmd-12-3835-2019,https://doi.org/10.5194/gmd-12-3835-2019, 2019
Short summary
Snowfall distribution and its response to the Arctic Oscillation: an evaluation of HighResMIP models in the Arctic using CPR/CloudSat observations
Manu Anna Thomas, Abhay Devasthale, Tristan L'Ecuyer, Shiyu Wang, Torben Koenigk, and Klaus Wyser
Geosci. Model Dev., 12, 3759–3772, https://doi.org/10.5194/gmd-12-3759-2019,https://doi.org/10.5194/gmd-12-3759-2019, 2019
Short summary
Cited articles  
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011.
Andela, N. and van der Werf, G. R.: Recent trends in African fires driven by cropland expansion and El Niño to La Niña transition, Nat. Clim. Change, 4, 791–795, https://doi.org/10.1038/nclimate2313, 2014.
Andela, N., van der Werf, G. R., Kaiser, J. W., van Leeuwen, T. T., Wooster, M. J., and Lehmann, C. E. R.: Biomass burning fuel consumption dynamics in the tropics and subtropics assessed from satellite, Biogeosciences, 13, 3717–3734, https://doi.org/10.5194/bg-13-3717-2016, 2016.
Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cy., 15, 955–966, https://doi.org/10.1029/2000GB001382, 2001.
Aragão, L. E. O. C. and Shimabukuro, Y. E.: The incidence of fire in Amazonian forests with implications for REDD, Science, 328, 1275–1278, https://doi.org/10.1126/science.1186925, 2010.
Publications Copernicus
Download
Short summary
Fire emission estimates are a key input dataset for climate models. We have merged satellite information with proxy datasets and fire models to reconstruct fire emissions since 1750 AD. Our dataset indicates that, on a global scale, fire emissions were relatively constant over time. Since roughly 1950, declining emissions from savannas were approximately balanced by increased emissions from tropical deforestation zones.
Fire emission estimates are a key input dataset for climate models. We have merged satellite...
Citation