Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 10, issue 9 | Copyright

Special issue: Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental...

Geosci. Model Dev., 10, 3329-3357, 2017
https://doi.org/10.5194/gmd-10-3329-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model experiment description paper 11 Sep 2017

Model experiment description paper | 11 Sep 2017

Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015)

Margreet J. E. van Marle et al.
Related authors
The impacts of recent drought on fire, forest loss, and regional smoke emissions in lowland Bolivia
Joshua P. Heyer, Mitchell J. Power, Robert D. Field, and Margreet J. E. van Marle
Biogeosciences, 15, 4317-4331, https://doi.org/10.5194/bg-15-4317-2018,https://doi.org/10.5194/bg-15-4317-2018, 2018
Global fire emissions estimates during 1997–2016
Guido R. van der Werf, James T. Randerson, Louis Giglio, Thijs T. van Leeuwen, Yang Chen, Brendan M. Rogers, Mingquan Mu, Margreet J. E. van Marle, Douglas C. Morton, G. James Collatz, Robert J. Yokelson, and Prasad S. Kasibhatla
Earth Syst. Sci. Data, 9, 697-720, https://doi.org/10.5194/essd-9-697-2017,https://doi.org/10.5194/essd-9-697-2017, 2017
Annual South American forest loss estimates based on passive microwave remote sensing (1990–2010)
M. J. E. van Marle, G. R. van der Werf, R. A. M. de Jeu, and Y. Y. Liu
Biogeosciences, 13, 609-624, https://doi.org/10.5194/bg-13-609-2016,https://doi.org/10.5194/bg-13-609-2016, 2016
Related subject area
Atmospheric Sciences
Assimilating compact phase space retrievals (CPSRs): comparison with independent observations (MOZAIC in situ and IASI retrievals) and extension to assimilation of truncated retrieval profiles
Arthur P. Mizzi, David P. Edwards, and Jeffrey L. Anderson
Geosci. Model Dev., 11, 3727-3745, https://doi.org/10.5194/gmd-11-3727-2018,https://doi.org/10.5194/gmd-11-3727-2018, 2018
libcloudph++ 2.0: aqueous-phase chemistry extension of the particle-based cloud microphysics scheme
Anna Jaruga and Hanna Pawlowska
Geosci. Model Dev., 11, 3623-3645, https://doi.org/10.5194/gmd-11-3623-2018,https://doi.org/10.5194/gmd-11-3623-2018, 2018
CTDAS-Lagrange v1.0: a high-resolution data assimilation system for regional carbon dioxide observations
Wei He, Ivar R. van der Velde, Arlyn E. Andrews, Colm Sweeney, John Miller, Pieter Tans, Ingrid T. van der Laan-Luijkx, Thomas Nehrkorn, Marikate Mountain, Weimin Ju, Wouter Peters, and Huilin Chen
Geosci. Model Dev., 11, 3515-3536, https://doi.org/10.5194/gmd-11-3515-2018,https://doi.org/10.5194/gmd-11-3515-2018, 2018
Implementation of a simple thermodynamic sea ice scheme, SICE version 1.0-38h1, within the ALADIN–HIRLAM numerical weather prediction system version 38h1
Yurii Batrak, Ekaterina Kourzeneva, and Mariken Homleid
Geosci. Model Dev., 11, 3347-3368, https://doi.org/10.5194/gmd-11-3347-2018,https://doi.org/10.5194/gmd-11-3347-2018, 2018
ORACLE 2-D (v2.0): an efficient module to compute the volatility and oxygen content of organic aerosol with a global chemistry–climate model
Alexandra P. Tsimpidi, Vlassis A. Karydis, Andrea Pozzer, Spyros N. Pandis, and Jos Lelieveld
Geosci. Model Dev., 11, 3369-3389, https://doi.org/10.5194/gmd-11-3369-2018,https://doi.org/10.5194/gmd-11-3369-2018, 2018
Cited articles
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011.
Andela, N. and van der Werf, G. R.: Recent trends in African fires driven by cropland expansion and El Niño to La Niña transition, Nat. Clim. Change, 4, 791–795, https://doi.org/10.1038/nclimate2313, 2014.
Andela, N., van der Werf, G. R., Kaiser, J. W., van Leeuwen, T. T., Wooster, M. J., and Lehmann, C. E. R.: Biomass burning fuel consumption dynamics in the tropics and subtropics assessed from satellite, Biogeosciences, 13, 3717–3734, https://doi.org/10.5194/bg-13-3717-2016, 2016.
Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cy., 15, 955–966, https://doi.org/10.1029/2000GB001382, 2001.
Aragão, L. E. O. C. and Shimabukuro, Y. E.: The incidence of fire in Amazonian forests with implications for REDD, Science, 328, 1275–1278, https://doi.org/10.1126/science.1186925, 2010.
Publications Copernicus
Special issue
Download
Short summary
Fire emission estimates are a key input dataset for climate models. We have merged satellite information with proxy datasets and fire models to reconstruct fire emissions since 1750 AD. Our dataset indicates that, on a global scale, fire emissions were relatively constant over time. Since roughly 1950, declining emissions from savannas were approximately balanced by increased emissions from tropical deforestation zones.
Fire emission estimates are a key input dataset for climate models. We have merged satellite...
Citation
Share