Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 10, issue 9 | Copyright
Geosci. Model Dev., 10, 3379-3390, 2017
https://doi.org/10.5194/gmd-10-3379-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Methods for assessment of models 12 Sep 2017

Methods for assessment of models | 12 Sep 2017

FluxnetLSM R package (v1.0): a community tool for processing FLUXNET data for use in land surface modelling

Anna M. Ukkola et al.
Related authors
Asymmetric responses of primary productivity to altered precipitation simulated by ecosystem models across three long-term grassland sites
Donghai Wu, Philippe Ciais, Nicolas Viovy, Alan K. Knapp, Kevin Wilcox, Michael Bahn, Melinda D. Smith, Sara Vicca, Simone Fatichi, Jakob Zscheischler, Yue He, Xiangyi Li, Akihiko Ito, Almut Arneth, Anna Harper, Anna Ukkola, Athanasios Paschalis, Benjamin Poulter, Changhui Peng, Daniel Ricciuto, David Reinthaler, Guangsheng Chen, Hanqin Tian, Hélène Genet, Jiafu Mao, Johannes Ingrisch, Julia E. S. M. Nabel, Julia Pongratz, Lena R. Boysen, Markus Kautz, Michael Schmitt, Patrick Meir, Qiuan Zhu, Roland Hasibeder, Sebastian Sippel, Shree R. S. Dangal, Stephen Sitch, Xiaoying Shi, Yingping Wang, Yiqi Luo, Yongwen Liu, and Shilong Piao
Biogeosciences, 15, 3421-3437, https://doi.org/10.5194/bg-15-3421-2018,https://doi.org/10.5194/bg-15-3421-2018, 2018
Derived Optimal Linear Combination Evapotranspiration (DOLCE): a global gridded synthesis ET estimate
Sanaa Hobeichi, Gab Abramowitz, Jason Evans, and Anna Ukkola
Hydrol. Earth Syst. Sci., 22, 1317-1336, https://doi.org/10.5194/hess-22-1317-2018,https://doi.org/10.5194/hess-22-1317-2018, 2018
Modelling evapotranspiration during precipitation deficits: identifying critical processes in a land surface model
Anna M. Ukkola, Andy J. Pitman, Mark Decker, Martin G. De Kauwe, Gab Abramowitz, Jatin Kala, and Ying-Ping Wang
Hydrol. Earth Syst. Sci., 20, 2403-2419, https://doi.org/10.5194/hess-20-2403-2016,https://doi.org/10.5194/hess-20-2403-2016, 2016
A worldwide analysis of trends in water-balance evapotranspiration
A. M. Ukkola and I. C. Prentice
Hydrol. Earth Syst. Sci., 17, 4177-4187, https://doi.org/10.5194/hess-17-4177-2013,https://doi.org/10.5194/hess-17-4177-2013, 2013
Related subject area
Climate and Earth System Modeling
Vegetation distribution and terrestrial carbon cycle in a carbon cycle configuration of JULES4.6 with new plant functional types
Anna B. Harper, Andrew J. Wiltshire, Peter M. Cox, Pierre Friedlingstein, Chris D. Jones, Lina M. Mercado, Stephen Sitch, Karina Williams, and Carolina Duran-Rojas
Geosci. Model Dev., 11, 2857-2873, https://doi.org/10.5194/gmd-11-2857-2018,https://doi.org/10.5194/gmd-11-2857-2018, 2018
OMEN-SED 1.0: a novel, numerically efficient organic matter sediment diagenesis module for coupling to Earth system models
Dominik Hülse, Sandra Arndt, Stuart Daines, Pierre Regnier, and Andy Ridgwell
Geosci. Model Dev., 11, 2649-2689, https://doi.org/10.5194/gmd-11-2649-2018,https://doi.org/10.5194/gmd-11-2649-2018, 2018
Stratospheric aerosol evolution after Pinatubo simulated with a coupled size-resolved aerosol–chemistry–climate model, SOCOL-AERv1.0
Timofei Sukhodolov, Jian-Xiong Sheng, Aryeh Feinberg, Bei-Ping Luo, Thomas Peter, Laura Revell, Andrea Stenke, Debra K. Weisenstein, and Eugene Rozanov
Geosci. Model Dev., 11, 2633-2647, https://doi.org/10.5194/gmd-11-2633-2018,https://doi.org/10.5194/gmd-11-2633-2018, 2018
Comparison of spatial downscaling methods of general circulation model results to study climate variability during the Last Glacial Maximum
Guillaume Latombe, Ariane Burke, Mathieu Vrac, Guillaume Levavasseur, Christophe Dumas, Masa Kageyama, and Gilles Ramstein
Geosci. Model Dev., 11, 2563-2579, https://doi.org/10.5194/gmd-11-2563-2018,https://doi.org/10.5194/gmd-11-2563-2018, 2018
The seasonal relationship between intraseasonal tropical variability and ENSO in CMIP5
Tatiana Matveeva, Daria Gushchina, and Boris Dewitte
Geosci. Model Dev., 11, 2373-2392, https://doi.org/10.5194/gmd-11-2373-2018,https://doi.org/10.5194/gmd-11-2373-2018, 2018
Cited articles
Abramowitz, G., Leuning, R., Clark, M., and Pitman, A.: Evaluating the performance of land surface Models, J. Climate, 21, 5468–5481, https://doi.org/10.1175/2008JCLI2378.1, 2008.
Abramowitz, G., Pouyanné, L., and Ajami, H.: On the information content of surface meteorology for downward atmospheric long-wave radiation synthesis, Geophys. Res. Lett., 39, 1–5, https://doi.org/10.1029/2011GL050726, 2012.
Baldocchi, D.: Measuring fluxes of trace gases and energy between ecosystems and the atmosphere – the state and future of the eddy covariance method, Glob. Change Biol., 20, 3600–3609, https://doi.org/10.1111/gcb.12649, 2014.
Blyth, E., Gash, J., Lloyd, A., Pryor, M., Weedon, G. P., and Shuttleworth, J.: Evaluating the JULES Land Surface Model Energy Fluxes Using FLUXNET Data, J. Hydrometeorol., 11, 509–519, https://doi.org/10.1175/2009JHM1183.1, 2010.
Publications Copernicus
Download
Short summary
Flux towers measure energy, carbon dioxide and water vapour fluxes. These data have become essential for evaluating land surface models (LSMs) – key tools for projecting future climate change. However, these data as released are not immediately usable with LSMs and must be post-processed to change units, screened for missing data and gap-filling. We present an open-source R package that transforms flux tower measurements into a format directly usable by LSMs.
Flux towers measure energy, carbon dioxide and water vapour fluxes. These data have become...
Citation
Share
FluxnetLSM R package (v1.0): a community tool for processing FLUXNET data for use in land surface modelling* Anna M. Ukkola et al." data-url="https://www.geosci-model-dev.net/10/3379/2017/" class="mobile-native-share share last">