Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 10, issue 9
Geosci. Model Dev., 10, 3391-3409, 2017
https://doi.org/10.5194/gmd-10-3391-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 10, 3391-3409, 2017
https://doi.org/10.5194/gmd-10-3391-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 14 Sep 2017

Model description paper | 14 Sep 2017

A Bayesian framework based on a Gaussian mixture model and radial-basis-function Fisher discriminant analysis (BayGmmKda V1.1) for spatial prediction of floods

Dieu Tien Bui and Nhat-Duc Hoang
Viewed  
Total article views: 1,520 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,141 334 45 1,520 82 33 58
  • HTML: 1,141
  • PDF: 334
  • XML: 45
  • Total: 1,520
  • Supplement: 82
  • BibTeX: 33
  • EndNote: 58
Views and downloads (calculated since 17 Jan 2017)
Cumulative views and downloads (calculated since 17 Jan 2017)
Viewed (geographical distribution)  
Total article views: 1,518 (including HTML, PDF, and XML) Thereof 1,448 with geography defined and 70 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved (final revised paper)  
No saved metrics found.
Saved (discussion paper)  
No saved metrics found.
Discussed (final revised paper)  
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 10 Dec 2018
Publications Copernicus
Download
Short summary
A probabilistic model, named BayGmmKda, is proposed for flood susceptibility assessment in central Vietnam. The model is a combination of Gaussian mixture model and radial-basis-function Fisher discriminant analysis. A geographic information system (GIS) database has been established for model construction. The proposed model can accurately establish a flood susceptibility map for the study region. Local authorities can use this map for land-use planning.
A probabilistic model, named BayGmmKda, is proposed for flood susceptibility assessment in...
Citation
Share