Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 10, issue 9
Geosci. Model Dev., 10, 3391-3409, 2017
https://doi.org/10.5194/gmd-10-3391-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 10, 3391-3409, 2017
https://doi.org/10.5194/gmd-10-3391-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 14 Sep 2017

Model description paper | 14 Sep 2017

A Bayesian framework based on a Gaussian mixture model and radial-basis-function Fisher discriminant analysis (BayGmmKda V1.1) for spatial prediction of floods

Dieu Tien Bui and Nhat-Duc Hoang
Related subject area  
Climate and Earth System Modeling
Evaluation of iterative Kalman smoother schemes for multi-decadal past climate analysis with comprehensive Earth system models
Javier García-Pintado and André Paul
Geosci. Model Dev., 11, 5051-5084, https://doi.org/10.5194/gmd-11-5051-2018,https://doi.org/10.5194/gmd-11-5051-2018, 2018
Short summary
ORCHIDEE-ROUTING: revising the river routing scheme using a high-resolution hydrological database
Trung Nguyen-Quang, Jan Polcher, Agnès Ducharne, Thomas Arsouze, Xudong Zhou, Ana Schneider, and Lluís Fita
Geosci. Model Dev., 11, 4965-4985, https://doi.org/10.5194/gmd-11-4965-2018,https://doi.org/10.5194/gmd-11-4965-2018, 2018
Short summary
Evaluation of the atmosphere–land–ocean–sea ice interface processes in the Regional Arctic System Model version 1 (RASM1) using local and globally gridded observations
Michael A. Brunke, John J. Cassano, Nicholas Dawson, Alice K. DuVivier, William J. Gutowski Jr., Joseph Hamman, Wieslaw Maslowski, Bart Nijssen, J. E. Jack Reeves Eyre, José C. Renteria, Andrew Roberts, and Xubin Zeng
Geosci. Model Dev., 11, 4817-4841, https://doi.org/10.5194/gmd-11-4817-2018,https://doi.org/10.5194/gmd-11-4817-2018, 2018
Short summary
The Indian summer monsoon in MetUM-GOML2.0: effects of air–sea coupling and resolution
Simon C. Peatman and Nicholas P. Klingaman
Geosci. Model Dev., 11, 4693-4709, https://doi.org/10.5194/gmd-11-4693-2018,https://doi.org/10.5194/gmd-11-4693-2018, 2018
Short summary
Interactive ocean bathymetry and coastlines for simulating the last deglaciation with the Max Planck Institute Earth System Model (MPI-ESM-v1.2)
Virna Loana Meccia and Uwe Mikolajewicz
Geosci. Model Dev., 11, 4677-4692, https://doi.org/10.5194/gmd-11-4677-2018,https://doi.org/10.5194/gmd-11-4677-2018, 2018
Cited articles  
Akaike, H.: A new look at the statistical identification model, IEEE T. Automat. Contr., 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974.
Alfieri, L., Salamon, P., Bianchi, A., Neal, J., Bates, P., and Feyen, L.: Advances in pan-European flood hazard mapping, Hydrol. Process., 28, 4067–4077, 10.1002/hyp.9947, 2014.
Alfieri, L., Bisselink, B., Dottori, F., Naumann, G., Roo, A., Salamon, P., Wyser, K., and Feyen, L.: Global projections of river flood risk in a warmer world, Earth's Future, 5, 171–182, 2017.
Arellano, C. and Dahyot, R.: Robust ellipse detection with Gaussian mixture models, Pattern Recognit., 58, 12–26, https://doi.org/10.1016/j.patcog.2016.01.017, 2016.
Aronica, G. T., Franza, F., Bates, P. D., and Neal, J. C.: Probabilistic evaluation of flood hazard in urban areas using Monte Carlo simulation, Hydrol. Process., 26, 3962–3972, https://doi.org/10.1002/hyp.8370, 2012.
Publications Copernicus
Download
Short summary
A probabilistic model, named BayGmmKda, is proposed for flood susceptibility assessment in central Vietnam. The model is a combination of Gaussian mixture model and radial-basis-function Fisher discriminant analysis. A geographic information system (GIS) database has been established for model construction. The proposed model can accurately establish a flood susceptibility map for the study region. Local authorities can use this map for land-use planning.
A probabilistic model, named BayGmmKda, is proposed for flood susceptibility assessment in...
Citation
Share