Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 10, issue 9 | Copyright
Geosci. Model Dev., 10, 3411-3423, 2017
https://doi.org/10.5194/gmd-10-3411-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Development and technical paper 18 Sep 2017

Development and technical paper | 18 Sep 2017

Optimizing the parameterization of deep mixing and internal seiches in one-dimensional hydrodynamic models: a case study with Simstrat v1.3

Adrien Gaudard et al.
Related authors
Tributaries affect the thermal response of lakes to climate change
Love Råman Vinnå, Alfred Wüest, Massimiliano Zappa, Gabriel Fink, and Damien Bouffard
Hydrol. Earth Syst. Sci., 22, 31-51, https://doi.org/10.5194/hess-22-31-2018,https://doi.org/10.5194/hess-22-31-2018, 2018
Organic carbon mass accumulation rate regulates the flux of reduced substances from the sediments of deep lakes
Thomas Steinsberger, Martin Schmid, Alfred Wüest, Robert Schwefel, Bernhard Wehrli, and Beat Müller
Biogeosciences, 14, 3275-3285, https://doi.org/10.5194/bg-14-3275-2017,https://doi.org/10.5194/bg-14-3275-2017, 2017
Are flood-driven turbidity currents hot spots for priming effect in lakes?
Damien Bouffard and Marie-Elodie Perga
Biogeosciences, 13, 3573-3584, https://doi.org/10.5194/bg-13-3573-2016,https://doi.org/10.5194/bg-13-3573-2016, 2016
Related subject area
Hydrology
STORM 1.0: a simple, flexible, and parsimonious stochastic rainfall generator for simulating climate and climate change
Michael Bliss Singer, Katerina Michaelides, and Daniel E. J. Hobley
Geosci. Model Dev., 11, 3713-3726, https://doi.org/10.5194/gmd-11-3713-2018,https://doi.org/10.5194/gmd-11-3713-2018, 2018
The Land surface Data Toolkit (LDT v7.2) – a data fusion environment for land data assimilation systems
Kristi R. Arsenault, Sujay V. Kumar, James V. Geiger, Shugong Wang, Eric Kemp, David M. Mocko, Hiroko Kato Beaudoing, Augusto Getirana, Mahdi Navari, Bailing Li, Jossy Jacob, Jerry Wegiel, and Christa D. Peters-Lidard
Geosci. Model Dev., 11, 3605-3621, https://doi.org/10.5194/gmd-11-3605-2018,https://doi.org/10.5194/gmd-11-3605-2018, 2018
The Variable Infiltration Capacity model version 5 (VIC-5): infrastructure improvements for new applications and reproducibility
Joseph J. Hamman, Bart Nijssen, Theodore J. Bohn, Diana R. Gergel, and Yixin Mao
Geosci. Model Dev., 11, 3481-3496, https://doi.org/10.5194/gmd-11-3481-2018,https://doi.org/10.5194/gmd-11-3481-2018, 2018
Developing a global operational seasonal hydro-meteorological forecasting system: GloFAS-Seasonal v1.0
Rebecca Emerton, Ervin Zsoter, Louise Arnal, Hannah L. Cloke, Davide Muraro, Christel Prudhomme, Elisabeth M. Stephens, Peter Salamon, and Florian Pappenberger
Geosci. Model Dev., 11, 3327-3346, https://doi.org/10.5194/gmd-11-3327-2018,https://doi.org/10.5194/gmd-11-3327-2018, 2018
EcH2O-iso 1.0: water isotopes and age tracking in a process-based, distributed ecohydrological model
Sylvain Kuppel, Doerthe Tetzlaff, Marco P. Maneta, and Chris Soulsby
Geosci. Model Dev., 11, 3045-3069, https://doi.org/10.5194/gmd-11-3045-2018,https://doi.org/10.5194/gmd-11-3045-2018, 2018
Cited articles
Adams, H. E. and Charles, R. M.: A Preliminary Investigation of Lake Stability and Chemical Analysis of Deep Waters of the Kigoma Sub-basin (Northern Basin) and the Kalemie Sub-basin (Southern Basin) of Lake Tanganyika, www.geo.arizona.edu/nyanza/pdf/adamscharles.pdf, 2000.
Albrecht, A., Goudsmit, G., and Zeh, M.: Importance of lacustrine physical factors for the distribution of anthropogenic 60Co in Lake Biel, Limnol. Oceanogr., 44, 196–206, 1999.
Ambrosetti, W. and Barbanti, L.: Deep water warming in lakes: an indicator of climatic change, J. Limnol., 58, 1–9, 1999.
Bäuerle, E.: Transverse baroclinic oscillations in Lake Überlingen, Aquat. Sci., 56, 145–160, 1994.
Publications Copernicus
Download
Short summary
The study of lakes often uses numerical models to reproduce the processes occurring in nature as accurately as possible. Due to the complexity of natural systems, all numerical models need to leave aside or simplify many of the relevant processes. In this work, we improve the modelling of the impact of wind on the internal currents in deep lakes. This improves the reproduction of deep mixing, which influences the concentrations of oxygen and nutrients, with biological and chemical consequences.
The study of lakes often uses numerical models to reproduce the processes occurring in nature as...
Citation
Share