Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 10, issue 9
Geosci. Model Dev., 10, 3461-3479, 2017
https://doi.org/10.5194/gmd-10-3461-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: The externalised surface model SURFEX

Geosci. Model Dev., 10, 3461-3479, 2017
https://doi.org/10.5194/gmd-10-3461-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model evaluation paper 21 Sep 2017

Model evaluation paper | 21 Sep 2017

Evaluating the performance of coupled snow–soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site

Mathieu Barrere et al.
Related authors  
The growth of shrubs on high Arctic tundra at Bylot Island: impact on snow physical properties and permafrost thermal regime
Florent Domine, Mathieu Barrere, and Samuel Morin
Biogeosciences, 13, 6471-6486, https://doi.org/10.5194/bg-13-6471-2016,https://doi.org/10.5194/bg-13-6471-2016, 2016
Short summary
Seasonal evolution of the effective thermal conductivity of the snow and the soil in high Arctic herb tundra at Bylot Island, Canada
Florent Domine, Mathieu Barrere, and Denis Sarrazin
The Cryosphere, 10, 2573-2588, https://doi.org/10.5194/tc-10-2573-2016,https://doi.org/10.5194/tc-10-2573-2016, 2016
Short summary
Related subject area  
Cryosphere
ESM-SnowMIP: assessing snow models and quantifying snow-related climate feedbacks
Gerhard Krinner, Chris Derksen, Richard Essery, Mark Flanner, Stefan Hagemann, Martyn Clark, Alex Hall, Helmut Rott, Claire Brutel-Vuilmet, Hyungjun Kim, Cécile B. Ménard, Lawrence Mudryk, Chad Thackeray, Libo Wang, Gabriele Arduini, Gianpaolo Balsamo, Paul Bartlett, Julia Boike, Aaron Boone, Frédérique Chéruy, Jeanne Colin, Matthias Cuntz, Yongjiu Dai, Bertrand Decharme, Jeff Derry, Agnès Ducharne, Emanuel Dutra, Xing Fang, Charles Fierz, Josephine Ghattas, Yeugeniy Gusev, Vanessa Haverd, Anna Kontu, Matthieu Lafaysse, Rachel Law, Dave Lawrence, Weiping Li, Thomas Marke, Danny Marks, Martin Ménégoz, Olga Nasonova, Tomoko Nitta, Masashi Niwano, John Pomeroy, Mark S. Raleigh, Gerd Schaedler, Vladimir Semenov, Tanya G. Smirnova, Tobias Stacke, Ulrich Strasser, Sean Svenson, Dmitry Turkov, Tao Wang, Nander Wever, Hua Yuan, Wenyan Zhou, and Dan Zhu
Geosci. Model Dev., 11, 5027-5049, https://doi.org/10.5194/gmd-11-5027-2018,https://doi.org/10.5194/gmd-11-5027-2018, 2018
Short summary
The GRISLI ice sheet model (version 2.0): calibration and validation for multi-millennial changes of the Antarctic ice sheet
Aurélien Quiquet, Christophe Dumas, Catherine Ritz, Vincent Peyaud, and Didier M. Roche
Geosci. Model Dev., 11, 5003-5025, https://doi.org/10.5194/gmd-11-5003-2018,https://doi.org/10.5194/gmd-11-5003-2018, 2018
Short summary
CVPM 1.1: a flexible heat-transfer modeling system for permafrost
Gary D. Clow
Geosci. Model Dev., 11, 4889-4908, https://doi.org/10.5194/gmd-11-4889-2018,https://doi.org/10.5194/gmd-11-4889-2018, 2018
Short summary
Dynamically coupling full Stokes and shallow shelf approximation for marine ice sheet flow using Elmer/Ice (v8.3)
Eef C. H. van Dongen, Nina Kirchner, Martin B. van Gijzen, Roderik S. W. van de Wal, Thomas Zwinger, Gong Cheng, Per Lötstedt, and Lina von Sydow
Geosci. Model Dev., 11, 4563-4576, https://doi.org/10.5194/gmd-11-4563-2018,https://doi.org/10.5194/gmd-11-4563-2018, 2018
Short summary
The NASA Eulerian Snow on Sea Ice Model (NESOSIM) v1.0: initial model development and analysis
Alek A. Petty, Melinda Webster, Linette Boisvert, and Thorsten Markus
Geosci. Model Dev., 11, 4577-4602, https://doi.org/10.5194/gmd-11-4577-2018,https://doi.org/10.5194/gmd-11-4577-2018, 2018
Cited articles  
ADAPT 2014: Carbon, nitrogen and water content of the active layer from sites across the Canadian Arctic, v. 1.0, Nordicana D20, https://doi.org/10.5885/45327AD-5245D08606AB4F52, 2014.
Allard, M.: Geomorphological changes and permafrost dynamics: Key factors in changing Arctic ecosystems. An example from Bylot Island, Nunavut, Canada, Geosci. Canada, 23, 205–224, 1996.
Barrere, M. and Domine, F.: Snow, soil and meteorological data at Bylot Island for simulating the permafrost thermal regime and evaluating output of the SURFEXv8 land surface scheme, v. 1.0 (1979–2015),Nordicana D29, https://doi.org/10.5885/45460CE-9B80A99D55F94D95, 2017.
Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the Swiss avalanche warning: Part I: numerical model, Cold Reg. Sci. Technol., 35, 123–145, https://doi.org/10.1016/S0165-232X(02)00074-5, 2002.
Beringer, J., Lynch, A. H., Chapin, F. S. I., Mack, M., and Bonan, G. B.: The representation of arctic soils in the land surface model: The importance of mosses, J. Climate, 14, 3324–3335, https://doi.org/10.1175/1520-0442(2001)014<3324:TROASI>2.0.CO;2, 2001.
Publications Copernicus
Special issue
Download
Short summary
Global warming projections still suffer from a limited representation of the permafrost–carbon feedback. This study assesses the capacity of snow-soil coupled models to simulate the permafrost thermal regime at Bylot Island, a high Arctic site. Significant flaws are found in the description of Arctic snow properties, resulting in erroneous heat transfers between the soil and the snow in simulations. Improved snow schemes are needed to accurately predict the future of permafrost.
Global warming projections still suffer from a limited representation of the permafrost–carbon...
Citation
Share