Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 10, issue 9 | Copyright

Special issue: The externalised surface model SURFEX

Geosci. Model Dev., 10, 3461-3479, 2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model evaluation paper 21 Sep 2017

Model evaluation paper | 21 Sep 2017

Evaluating the performance of coupled snow–soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site

Mathieu Barrere et al.
Related authors
The growth of shrubs on high Arctic tundra at Bylot Island: impact on snow physical properties and permafrost thermal regime
Florent Domine, Mathieu Barrere, and Samuel Morin
Biogeosciences, 13, 6471-6486,,, 2016
Seasonal evolution of the effective thermal conductivity of the snow and the soil in high Arctic herb tundra at Bylot Island, Canada
Florent Domine, Mathieu Barrere, and Denis Sarrazin
The Cryosphere, 10, 2573-2588,,, 2016
Related subject area
MPAS-Albany Land Ice (MALI): a variable-resolution ice sheet model for Earth system modeling using Voronoi grids
Matthew J. Hoffman, Mauro Perego, Stephen F. Price, William H. Lipscomb, Tong Zhang, Douglas Jacobsen, Irina Tezaur, Andrew G. Salinger, Raymond Tuminaro, and Luca Bertagna
Geosci. Model Dev., 11, 3747-3780,,, 2018
BrAHMs V1.0: a fast, physically based subglacial hydrology model for continental-scale application
Mark Kavanagh and Lev Tarasov
Geosci. Model Dev., 11, 3497-3513,,, 2018
SHAKTI: Subglacial Hydrology and Kinetic, Transient Interactions v1.0
Aleah Sommers, Harihar Rajaram, and Mathieu Morlighem
Geosci. Model Dev., 11, 2955-2974,,, 2018
SMRT: an active–passive microwave radiative transfer model for snow with multiple microstructure and scattering formulations (v1.0)
Ghislain Picard, Melody Sandells, and Henning Löwe
Geosci. Model Dev., 11, 2763-2788,,, 2018
PIC v1.3: comprehensive R package for computing permafrost indices with daily weather observations and atmospheric forcing over the Qinghai–Tibet Plateau
Lihui Luo, Zhongqiong Zhang, Wei Ma, Shuhua Yi, and Yanli Zhuang
Geosci. Model Dev., 11, 2475-2491,,, 2018
Cited articles
ADAPT 2014: Carbon, nitrogen and water content of the active layer from sites across the Canadian Arctic, v. 1.0, Nordicana D20,, 2014.
Allard, M.: Geomorphological changes and permafrost dynamics: Key factors in changing Arctic ecosystems. An example from Bylot Island, Nunavut, Canada, Geosci. Canada, 23, 205–224, 1996.
Barrere, M. and Domine, F.: Snow, soil and meteorological data at Bylot Island for simulating the permafrost thermal regime and evaluating output of the SURFEXv8 land surface scheme, v. 1.0 (1979–2015),Nordicana D29,, 2017.
Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the Swiss avalanche warning: Part I: numerical model, Cold Reg. Sci. Technol., 35, 123–145,, 2002.
Beringer, J., Lynch, A. H., Chapin, F. S. I., Mack, M., and Bonan, G. B.: The representation of arctic soils in the land surface model: The importance of mosses, J. Climate, 14, 3324–3335,<3324:TROASI>2.0.CO;2, 2001.
Publications Copernicus
Special issue
Short summary
Global warming projections still suffer from a limited representation of the permafrost–carbon feedback. This study assesses the capacity of snow-soil coupled models to simulate the permafrost thermal regime at Bylot Island, a high Arctic site. Significant flaws are found in the description of Arctic snow properties, resulting in erroneous heat transfers between the soil and the snow in simulations. Improved snow schemes are needed to accurately predict the future of permafrost.
Global warming projections still suffer from a limited representation of the permafrost–carbon...