Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 10, issue 9 | Copyright
Geosci. Model Dev., 10, 3499-3517, 2017
https://doi.org/10.5194/gmd-10-3499-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model evaluation paper 22 Sep 2017

Model evaluation paper | 22 Sep 2017

Evaluating the effect of alternative carbon allocation schemes in a land surface model (CLM4.5) on carbon fluxes, pools, and turnover in temperate forests

Francesc Montané et al.
Related authors
Evaluating high-resolution forecasts of atmospheric CO and CO2 from a global prediction system during KORUS-AQ field campaign
Wenfu Tang, Avelino F. Arellano, Joshua P. DiGangi, Yonghoon Choi, Glenn S. Diskin, Anna Agustí-Panareda, Mark Parrington, Sebastien Massart, Benjamin Gaubert, Youngjae Lee, Danbi Kim, Jinsang Jung, Jinkyu Hong, Je-Woo Hong, Yugo Kanaya, Mindo Lee, Ryan M. Stauffer, Anne M. Thompson, James H. Flynn, and Jung-Hun Woo
Atmos. Chem. Phys., 18, 11007-11030, https://doi.org/10.5194/acp-18-11007-2018,https://doi.org/10.5194/acp-18-11007-2018, 2018
Land surface model parameter optimisation using in-situ flux data: comparison of gradient-based versus random search algorithms
Vladislav Bastrikov, Natasha MacBean, Cédric Bacour, Diego Santaren, Sylvain Kuppel, and Philippe Peylin
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-160,https://doi.org/10.5194/gmd-2018-160, 2018
Manuscript under review for GMD
Plant-microbe Symbioses Reveal Underestimation of Modeled Climate Impacts
Mingjie Shi, Joshua B. Fisher, Richard P. Phillips, and Edward R. Brzostek
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-293,https://doi.org/10.5194/bg-2018-293, 2018
Manuscript under review for BG
Evaluating the E3SM Land Model at a temperate forest site using flux and soil water measurements
Junyi Liang, Gangsheng Wang, Daniel M. Ricciuto, Lianhong Gu, Paul J. Hanson, Jeffrey D. Wood, and Melanie A. Mayes
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-34,https://doi.org/10.5194/gmd-2018-34, 2018
Revised manuscript under review for GMD
The CHRONOS mission: capability for sub-hourly synoptic observations of carbon monoxide and methane to quantify emissions and transport of air pollution
David P. Edwards, Helen M. Worden, Doreen Neil, Gene Francis, Tim Valle, and Avelino F. Arellano Jr.
Atmos. Meas. Tech., 11, 1061-1085, https://doi.org/10.5194/amt-11-1061-2018,https://doi.org/10.5194/amt-11-1061-2018, 2018
Related subject area
Biogeosciences
Parameter calibration in global soil carbon models using surrogate-based optimization
Haoyu Xu, Tao Zhang, Yiqi Luo, Xin Huang, and Wei Xue
Geosci. Model Dev., 11, 3027-3044, https://doi.org/10.5194/gmd-11-3027-2018,https://doi.org/10.5194/gmd-11-3027-2018, 2018
Implementing the nitrogen cycle into the dynamic global vegetation, hydrology, and crop growth model LPJmL (version 5.0)
Werner von Bloh, Sibyll Schaphoff, Christoph Müller, Susanne Rolinski, Katharina Waha, and Sönke Zaehle
Geosci. Model Dev., 11, 2789-2812, https://doi.org/10.5194/gmd-11-2789-2018,https://doi.org/10.5194/gmd-11-2789-2018, 2018
ORCHIMIC (v1.0), a microbe-mediated model for soil organic matter decomposition
Ye Huang, Bertrand Guenet, Philippe Ciais, Ivan A. Janssens, Jennifer L. Soong, Yilong Wang, Daniel Goll, Evgenia Blagodatskaya, and Yuanyuan Huang
Geosci. Model Dev., 11, 2111-2138, https://doi.org/10.5194/gmd-11-2111-2018,https://doi.org/10.5194/gmd-11-2111-2018, 2018
Soil Methanotrophy Model (MeMo v1.0): a process-based model to quantify global uptake of atmospheric methane by soil
Fabiola Murguia-Flores, Sandra Arndt, Anita L. Ganesan, Guillermo Murray-Tortarolo, and Edward R. C. Hornibrook
Geosci. Model Dev., 11, 2009-2032, https://doi.org/10.5194/gmd-11-2009-2018,https://doi.org/10.5194/gmd-11-2009-2018, 2018
Assimilating solar-induced chlorophyll fluorescence into the terrestrial biosphere model BETHY-SCOPE v1.0: model description and information content
Alexander J. Norton, Peter J. Rayner, Ernest N. Koffi, and Marko Scholze
Geosci. Model Dev., 11, 1517-1536, https://doi.org/10.5194/gmd-11-1517-2018,https://doi.org/10.5194/gmd-11-1517-2018, 2018
Cited articles
Alexander, R. M., Rollinson, C. R., Babst, F., Trouet, V., and Moore, D. J. P.: Uncertainty in tree-ring based aboveground biomass estimates does not substantially alter growth-climate relationships, Trees-Struct. Funct., in review, 2017.
Asner, G. P., Scurlock, J. M., and Hicke, J. A.: Global synthesis of leaf area index observations: implications for ecological and remote sensing studies, Global Ecol. Biogeogr., 12, 191–205, 2003.
Atkin, O.: New Phytologist: bridging the `plant function–climate modelling divide', New Phytol., 209, 1329–1332, 2016.
Babst, F., Bouriaud, O., Papale, D., Gielen, B., Janssens, I. A., Nikinmaa, E., Ibrom, A., Wu, J., Bernhofer, C., Köstner, B., Grünwald, T., Seufert, G., Ciais, P., and Frank, D.: Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites, New Phytol., 201, 1289–1303, 2014.
Publications Copernicus
Download
Short summary
How carbon is allocated to different plant tissues (leaves, stem, and roots) determines carbon residence time and thus remains a central challenge for understanding the global carbon cycle. In this paper, we compared standard and novel carbon allocation schemes in CLM4.5 and evaluated them using eddy covariance wood and leaf biomass. The dynamic scheme based on work by Litton improved model performance, but this was dependent on model assumptions about woody turnover.
How carbon is allocated to different plant tissues (leaves, stem, and roots) determines carbon...
Citation
Share