Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 10, issue 9
Geosci. Model Dev., 10, 3519-3545, 2017
https://doi.org/10.5194/gmd-10-3519-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 10, 3519-3545, 2017
https://doi.org/10.5194/gmd-10-3519-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Development and technical paper 25 Sep 2017

Development and technical paper | 25 Sep 2017

Reverse engineering model structures for soil and ecosystem respiration: the potential of gene expression programming

Iulia Ilie et al.
Viewed  
Total article views: 1,201 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
857 308 36 1,201 85 43 64
  • HTML: 857
  • PDF: 308
  • XML: 36
  • Total: 1,201
  • Supplement: 85
  • BibTeX: 43
  • EndNote: 64
Views and downloads (calculated since 07 Nov 2016)
Cumulative views and downloads (calculated since 07 Nov 2016)
Viewed (geographical distribution)  
Total article views: 1,197 (including HTML, PDF, and XML) Thereof 1,191 with geography defined and 6 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved (final revised paper)  
No saved metrics found.
Saved (discussion paper)  
No saved metrics found.
Discussed (final revised paper)  
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 18 Dec 2018
Publications Copernicus
Download
Short summary
Accurate representation of land-atmosphere carbon fluxes is essential for future climate projections, although some of the responses of CO2 fluxes to climate often remain uncertain. The increase in available data allows for new approaches in their modelling. We automatically developed models for ecosystem and soil carbon respiration using a machine learning approach. When compared with established respiration models, we found that they are better in prediction as well as offering new insights.
Accurate representation of land-atmosphere carbon fluxes is essential for future climate...
Citation
Share