Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 10, issue 9
Geosci. Model Dev., 10, 3519-3545, 2017
https://doi.org/10.5194/gmd-10-3519-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 10, 3519-3545, 2017
https://doi.org/10.5194/gmd-10-3519-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Development and technical paper 25 Sep 2017

Development and technical paper | 25 Sep 2017

Reverse engineering model structures for soil and ecosystem respiration: the potential of gene expression programming

Iulia Ilie et al.
Related authors  
Carbon–Water Flux Coupling Under Progressive Drought
Sven Boese, Martin Jung, Nuno Carvalhais, Adriaan J. Teuling, and Markus Reichstein
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-474,https://doi.org/10.5194/bg-2018-474, 2018
Manuscript under review for BG
Short summary
Evaluation of simulated ozone effects in forest ecosystems against biomass damage estimates from fumigation experiments
Martina Franz, Rocio Alonso, Almut Arneth, Patrick Büker, Susana Elvira, Giacomo Gerosa, Lisa Emberson, Zhaozhong Feng, Didier Le Thiec, Riccardo Marzuoli, Elina Oksanen, Johan Uddling, Matthew Wilkinson, and Sönke Zaehle
Biogeosciences, 15, 6941-6957, https://doi.org/10.5194/bg-15-6941-2018,https://doi.org/10.5194/bg-15-6941-2018, 2018
Short summary
Saharan dust events in the European Alps: role on snowmelt and geochemical characterization
Biagio Di Mauro, Roberto Garzonio, Micol Rossini, Gianluca Filippa, Paolo Pogliotti, Marta Galvagno, Umberto Morra di Cella, Mirco Migliavacca, Giovanni Baccolo, Massimiliano Clemenza, Barbara Delmonte, Valter Maggi, Marie Dumont, François Tuzet, Matthieu Lafaysse, Samuel Morin, Edoardo Cremonese, and Roberto Colombo
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-241,https://doi.org/10.5194/tc-2018-241, 2018
Manuscript under review for TC
Short summary
Assessing the dynamics of vegetation productivity in circumpolar regions with different satellite indicators of greenness and photosynthesis
Sophia Walther, Luis Guanter, Birgit Heim, Martin Jung, Gregory Duveiller, Aleksandra Wolanin, and Torsten Sachs
Biogeosciences, 15, 6221-6256, https://doi.org/10.5194/bg-15-6221-2018,https://doi.org/10.5194/bg-15-6221-2018, 2018
Short summary
Contrasting biosphere responses to hydrometeorological extremes: revisiting the 2010 western Russian heatwave
Milan Flach, Sebastian Sippel, Fabian Gans, Ana Bastos, Alexander Brenning, Markus Reichstein, and Miguel D. Mahecha
Biogeosciences, 15, 6067-6085, https://doi.org/10.5194/bg-15-6067-2018,https://doi.org/10.5194/bg-15-6067-2018, 2018
Short summary
Related subject area  
Earth and Space Science Informatics
Global hydro-climatic biomes identified via multitask learning
Christina Papagiannopoulou, Diego G. Miralles, Matthias Demuzere, Niko E. C. Verhoest, and Willem Waegeman
Geosci. Model Dev., 11, 4139-4153, https://doi.org/10.5194/gmd-11-4139-2018,https://doi.org/10.5194/gmd-11-4139-2018, 2018
Short summary
A run control framework to streamline profiling, porting, and tuning simulation runs and provenance tracking of geoscientific applications
Wendy Sharples, Ilya Zhukov, Markus Geimer, Klaus Goergen, Sebastian Luehrs, Thomas Breuer, Bibi Naz, Ketan Kulkarni, Slavko Brdar, and Stefan Kollet
Geosci. Model Dev., 11, 2875-2895, https://doi.org/10.5194/gmd-11-2875-2018,https://doi.org/10.5194/gmd-11-2875-2018, 2018
Short summary
An improved logistic regression model based on a spatially weighted technique (ILRBSWT v1.0) and its application to mineral prospectivity mapping
Daojun Zhang, Na Ren, and Xianhui Hou
Geosci. Model Dev., 11, 2525-2539, https://doi.org/10.5194/gmd-11-2525-2018,https://doi.org/10.5194/gmd-11-2525-2018, 2018
Short summary
High-performance software framework for the calculation of satellite-to-satellite data matchups (MMS version 1.2)
Thomas Block, Sabine Embacher, Christopher J. Merchant, and Craig Donlon
Geosci. Model Dev., 11, 2419-2427, https://doi.org/10.5194/gmd-11-2419-2018,https://doi.org/10.5194/gmd-11-2419-2018, 2018
Short summary
A data model of the Climate and Forecast metadata conventions (CF-1.6) with a software implementation (cf-python v2.1)
David Hassell, Jonathan Gregory, Jon Blower, Bryan N. Lawrence, and Karl E. Taylor
Geosci. Model Dev., 10, 4619-4646, https://doi.org/10.5194/gmd-10-4619-2017,https://doi.org/10.5194/gmd-10-4619-2017, 2017
Short summary
Cited articles  
Ashworth, J., Wurtmann, E. J., and Baliga, N. S.: Reverse engineering systems models of regulation: Discovery, prediction and mechanisms, Curr. Opin. Biotechnol., 23, 598–603, https://doi.org/10.1016/j.copbio.2011.12.005, 2012.
Auger, A. and Hansen, N.: A restart CMA evolution strategy with increasing population size, 2005 IEEE Congress on Evolutionary Computation, 2, 1769–1776, https://doi.org/10.1109/CEC.2005.1554902, 2005.
Bandt, C. and Pompe, B.: Permutation entropy: a natural complexity measure for time series, Phys. Rev. Lett., 88, 174102, https://doi.org/10.1103/PhysRevLett.88.174102, 2002.
Bennett, N. D., Croke, B. F., Jakeman, A. J., Newham, L. T. H., and Norton, J. P.: Performance evaluation of environmental models, in: 2010 International Congress on Environmental Modelling and Software Modelling for Environment's Sake, 1–9, http://scholarsarchive.byu.edu/iemssconference/2010/all/247/ (last access: September 2017), 2010.
Beyer, H.-G. and Schwefel, H.-P.: Evolution Strategies, Natrual Computing, 1, 3–52, 2002.
Publications Copernicus
Download
Short summary
Accurate representation of land-atmosphere carbon fluxes is essential for future climate projections, although some of the responses of CO2 fluxes to climate often remain uncertain. The increase in available data allows for new approaches in their modelling. We automatically developed models for ecosystem and soil carbon respiration using a machine learning approach. When compared with established respiration models, we found that they are better in prediction as well as offering new insights.
Accurate representation of land-atmosphere carbon fluxes is essential for future climate...
Citation
Share