Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
Volume 10, issue 9
Geosci. Model Dev., 10, 3519–3545, 2017
https://doi.org/10.5194/gmd-10-3519-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 10, 3519–3545, 2017
https://doi.org/10.5194/gmd-10-3519-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Development and technical paper 25 Sep 2017

Development and technical paper | 25 Sep 2017

Reverse engineering model structures for soil and ecosystem respiration: the potential of gene expression programming

Iulia Ilie et al.
Related authors  
ESMValTool v2.0 – Extended set of large-scale diagnostics for quasi-operational and comprehensive evaluation of Earth system models in CMIP
Veronika Eyring, Lisa Bock, Axel Lauer, Mattia Righi, Manuel Schlund, Bouwe Andela, Enrico Arnone, Omar Bellprat, Björn Brötz, Louis-Phillippe Caron, Nuno Carvalhais, Irene Cionni, Nicola Cortesi, Bas Crezee, Edouard Davin, Paolo Davini, Kevin Debeire, Lee de Mora, Clara Deser, David Docquier, Paul Earnshaw, Carsten Ehbrecht, Bettina K. Gier, Nube Gonzalez-Reviriego, Paul Goodman, Stefan Hagemann, Steven Hardiman, Birgit Hassler, Alasdair Hunter, Christopher Kadow, Stephan Kindermann, Sujan Koirala, Nikolay V. Koldunov, Quentin Lejeune, Valerio Lembo, Tomas Lovato, Valerio Lucarini, Francois Massonnet, Benjamin Müller, Amarjiit Pandde, Nuria Pérez-Zanón, Adam Phillips, Valeriu Predoi, Joellen Russell, Alistair Sellar, Federico Serva, Tobias Stacke, Ranjini Swaminathan, Verónica Torralba, Javier Vegas-Regidor, Jost von Hardenberg, Katja Weigel, and Klaus Zimmermann
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-291,https://doi.org/10.5194/gmd-2019-291, 2019
Manuscript under review for GMD
Short summary
Recent changes in the dominant environmental controls of net biome productivity
Barbara Marcolla, Mirco Migliavacca, Christian Rödenbeck, and Alessandro Cescatti
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-428,https://doi.org/10.5194/bg-2019-428, 2019
Manuscript under review for BG
Short summary
Ecosystem physio-phenology revealed using circular statistics
Daniel E. Pabon-Moreno, Talie Musavi, Mirco Migliavacca, Markus Reichstein, Christine Römermann, and Miguel D. Mahecha
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-403,https://doi.org/10.5194/bg-2019-403, 2019
Manuscript under review for BG
Synoptic-scale controls of fog and low clouds in the Namib Desert
Hendrik Andersen, Jan Cermak, Julia Fuchs, Peter Knippertz, Marco Gaetani, Julian Quinting, Sebastian Sippel, and Roland Vogt
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-924,https://doi.org/10.5194/acp-2019-924, 2019
Revised manuscript under review for ACP
Short summary
Earth system data cubes unravel global multivariate dynamics
Miguel D. Mahecha, Fabian Gans, Gunnar Brandt, Rune Christiansen, Sarah E. Cornell, Normann Fomferra, Guido Kraemer, Jonas Peters, Paul Bodesheim, Gustau Camps-Valls, Jonathan F. Donges, Wouter Dorigo, Lina Estupiñan-Suarez, Victor H. Gutierrez-Velez, Martin Gutwin, Martin Jung, Maria C. Londoño, Diego G. Miralles, Phillip Papastefanou, and Markus Reichstein
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-62,https://doi.org/10.5194/esd-2019-62, 2019
Revised manuscript under review for ESD
Short summary
Related subject area  
Earth and Space Science Informatics
Fast domain-aware neural network emulation of a planetary boundary layer parameterization in a numerical weather forecast model
Jiali Wang, Prasanna Balaprakash, and Rao Kotamarthi
Geosci. Model Dev., 12, 4261–4274, https://doi.org/10.5194/gmd-12-4261-2019,https://doi.org/10.5194/gmd-12-4261-2019, 2019
Short summary
VISIR-1.b: ocean surface gravity waves and currents for energy-efficient navigation
Gianandrea Mannarini and Lorenzo Carelli
Geosci. Model Dev., 12, 3449–3480, https://doi.org/10.5194/gmd-12-3449-2019,https://doi.org/10.5194/gmd-12-3449-2019, 2019
Short summary
Topological data analysis and machine learning for recognizing atmospheric river patterns in large climate datasets
Grzegorz Muszynski, Karthik Kashinath, Vitaliy Kurlin, Michael Wehner, and Prabhat
Geosci. Model Dev., 12, 613–628, https://doi.org/10.5194/gmd-12-613-2019,https://doi.org/10.5194/gmd-12-613-2019, 2019
Short summary
Global hydro-climatic biomes identified via multitask learning
Christina Papagiannopoulou, Diego G. Miralles, Matthias Demuzere, Niko E. C. Verhoest, and Willem Waegeman
Geosci. Model Dev., 11, 4139–4153, https://doi.org/10.5194/gmd-11-4139-2018,https://doi.org/10.5194/gmd-11-4139-2018, 2018
Short summary
A run control framework to streamline profiling, porting, and tuning simulation runs and provenance tracking of geoscientific applications
Wendy Sharples, Ilya Zhukov, Markus Geimer, Klaus Goergen, Sebastian Luehrs, Thomas Breuer, Bibi Naz, Ketan Kulkarni, Slavko Brdar, and Stefan Kollet
Geosci. Model Dev., 11, 2875–2895, https://doi.org/10.5194/gmd-11-2875-2018,https://doi.org/10.5194/gmd-11-2875-2018, 2018
Short summary
Cited articles  
Ashworth, J., Wurtmann, E. J., and Baliga, N. S.: Reverse engineering systems models of regulation: Discovery, prediction and mechanisms, Curr. Opin. Biotechnol., 23, 598–603, https://doi.org/10.1016/j.copbio.2011.12.005, 2012.
Auger, A. and Hansen, N.: A restart CMA evolution strategy with increasing population size, 2005 IEEE Congress on Evolutionary Computation, 2, 1769–1776, https://doi.org/10.1109/CEC.2005.1554902, 2005.
Bandt, C. and Pompe, B.: Permutation entropy: a natural complexity measure for time series, Phys. Rev. Lett., 88, 174102, https://doi.org/10.1103/PhysRevLett.88.174102, 2002.
Bennett, N. D., Croke, B. F., Jakeman, A. J., Newham, L. T. H., and Norton, J. P.: Performance evaluation of environmental models, in: 2010 International Congress on Environmental Modelling and Software Modelling for Environment's Sake, 1–9, http://scholarsarchive.byu.edu/iemssconference/2010/all/247/ (last access: September 2017), 2010.
Beyer, H.-G. and Schwefel, H.-P.: Evolution Strategies, Natrual Computing, 1, 3–52, 2002.
Publications Copernicus
Download
Short summary
Accurate representation of land-atmosphere carbon fluxes is essential for future climate projections, although some of the responses of CO2 fluxes to climate often remain uncertain. The increase in available data allows for new approaches in their modelling. We automatically developed models for ecosystem and soil carbon respiration using a machine learning approach. When compared with established respiration models, we found that they are better in prediction as well as offering new insights.
Accurate representation of land-atmosphere carbon fluxes is essential for future climate...
Citation