Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 10, issue 9
Geosci. Model Dev., 10, 3547-3566, 2017
https://doi.org/10.5194/gmd-10-3547-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: The externalised surface model SURFEX

Geosci. Model Dev., 10, 3547-3566, 2017
https://doi.org/10.5194/gmd-10-3547-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 26 Sep 2017

Model description paper | 26 Sep 2017

Implementation of a physically based water percolation routine in the Crocus/SURFEX (V7.3) snowpack model

Christopher J. L. D'Amboise et al.
Related authors  
Saharan dust events in the European Alps: role on snowmelt and geochemical characterization
Biagio Di Mauro, Roberto Garzonio, Micol Rossini, Gianluca Filippa, Paolo Pogliotti, Marta Galvagno, Umberto Morra di Cella, Mirco Migliavacca, Giovanni Baccolo, Massimiliano Clemenza, Barbara Delmonte, Valter Maggi, Marie Dumont, François Tuzet, Matthieu Lafaysse, Samuel Morin, Edoardo Cremonese, and Roberto Colombo
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-241,https://doi.org/10.5194/tc-2018-241, 2018
Manuscript under review for TC
Short summary
Spatial consistency and bias in avalanche forecasts – a case study in the European Alps
Frank Techel, Christoph Mitterer, Elisabetta Ceaglio, Cécile Coléou, Samuel Morin, Francesca Rastelli, and Ross S. Purves
Nat. Hazards Earth Syst. Sci., 18, 2697-2716, https://doi.org/10.5194/nhess-18-2697-2018,https://doi.org/10.5194/nhess-18-2697-2018, 2018
Short summary
Parameter uncertainty analysis for an operational hydrological model using residual-based and limits of acceptability approaches
Aynom T. Teweldebrhan, John F. Burkhart, and Thomas V. Schuler
Hydrol. Earth Syst. Sci., 22, 5021-5039, https://doi.org/10.5194/hess-22-5021-2018,https://doi.org/10.5194/hess-22-5021-2018, 2018
57 years (1960–2017) of snow and meteorological observations from a mid-altitude mountain site (Col de Porte, France, 1325 m alt.)
Yves Lejeune, Marie Dumont, Jean-Michel Panel, Matthieu Lafaysse, Philippe Lapalus, Erwan Le Gac, Bernard Lesaffre, and Samuel Morin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-84,https://doi.org/10.5194/essd-2018-84, 2018
Revised manuscript accepted for ESSD
Short summary
Numerical experiments on vapor diffusion in polar snow and firn and its impact on isotopes using the multi-layer energy balance model Crocus in SURFEX v8.0
Alexandra Touzeau, Amaëlle Landais, Samuel Morin, Laurent Arnaud, and Ghislain Picard
Geosci. Model Dev., 11, 2393-2418, https://doi.org/10.5194/gmd-11-2393-2018,https://doi.org/10.5194/gmd-11-2393-2018, 2018
Short summary
Related subject area  
Cryosphere
ESM-SnowMIP: assessing snow models and quantifying snow-related climate feedbacks
Gerhard Krinner, Chris Derksen, Richard Essery, Mark Flanner, Stefan Hagemann, Martyn Clark, Alex Hall, Helmut Rott, Claire Brutel-Vuilmet, Hyungjun Kim, Cécile B. Ménard, Lawrence Mudryk, Chad Thackeray, Libo Wang, Gabriele Arduini, Gianpaolo Balsamo, Paul Bartlett, Julia Boike, Aaron Boone, Frédérique Chéruy, Jeanne Colin, Matthias Cuntz, Yongjiu Dai, Bertrand Decharme, Jeff Derry, Agnès Ducharne, Emanuel Dutra, Xing Fang, Charles Fierz, Josephine Ghattas, Yeugeniy Gusev, Vanessa Haverd, Anna Kontu, Matthieu Lafaysse, Rachel Law, Dave Lawrence, Weiping Li, Thomas Marke, Danny Marks, Martin Ménégoz, Olga Nasonova, Tomoko Nitta, Masashi Niwano, John Pomeroy, Mark S. Raleigh, Gerd Schaedler, Vladimir Semenov, Tanya G. Smirnova, Tobias Stacke, Ulrich Strasser, Sean Svenson, Dmitry Turkov, Tao Wang, Nander Wever, Hua Yuan, Wenyan Zhou, and Dan Zhu
Geosci. Model Dev., 11, 5027-5049, https://doi.org/10.5194/gmd-11-5027-2018,https://doi.org/10.5194/gmd-11-5027-2018, 2018
Short summary
The GRISLI ice sheet model (version 2.0): calibration and validation for multi-millennial changes of the Antarctic ice sheet
Aurélien Quiquet, Christophe Dumas, Catherine Ritz, Vincent Peyaud, and Didier M. Roche
Geosci. Model Dev., 11, 5003-5025, https://doi.org/10.5194/gmd-11-5003-2018,https://doi.org/10.5194/gmd-11-5003-2018, 2018
Short summary
CVPM 1.1: a flexible heat-transfer modeling system for permafrost
Gary D. Clow
Geosci. Model Dev., 11, 4889-4908, https://doi.org/10.5194/gmd-11-4889-2018,https://doi.org/10.5194/gmd-11-4889-2018, 2018
Short summary
Dynamically coupling full Stokes and shallow shelf approximation for marine ice sheet flow using Elmer/Ice (v8.3)
Eef C. H. van Dongen, Nina Kirchner, Martin B. van Gijzen, Roderik S. W. van de Wal, Thomas Zwinger, Gong Cheng, Per Lötstedt, and Lina von Sydow
Geosci. Model Dev., 11, 4563-4576, https://doi.org/10.5194/gmd-11-4563-2018,https://doi.org/10.5194/gmd-11-4563-2018, 2018
Short summary
The NASA Eulerian Snow on Sea Ice Model (NESOSIM) v1.0: initial model development and analysis
Alek A. Petty, Melinda Webster, Linette Boisvert, and Thorsten Markus
Geosci. Model Dev., 11, 4577-4602, https://doi.org/10.5194/gmd-11-4577-2018,https://doi.org/10.5194/gmd-11-4577-2018, 2018
Cited articles  
Adachia, S., Yamaguchia, S., Ozekib, T., and Kosec, K.: Hysteresis in the water retention curve of snow measured using an MRI system, available at: http://arc.lib.montana.edu/snow-science/objects/issw-2012-918-922.pdf (last access: 6 July 2016), 2012.
Ambach, W. and Howorka, F.: Avalanche Activity and Free Water Content of Snow at Obergurgl (1980 m a.s.l., Spring 1962), Assoc. Int. Hydrol. Sci., 65–72, 1966.
Avanzi, F., Hirashima, H., Yamaguchi, S., Katsushima, T., and De Michele, C.: Observations of capillary barriers and preferential flow in layered snow during cold laboratory experiments, The Cryosphere, 10, 2013–2026, https://doi.org/10.5194/tc-10-2013-2016, 2016.
Bengtsson, L.: Percolation of meltwater through a snowpack, Cold Reg. Sci. Technol., 6, 73–81, doi10.1016/0165-232X(82)90046-5, 1982.
Birkeland, K. W., Hansen, K. J., and Brown, R. L.: The Spatial Variability of Snow Resistance on Potential Avalanche Slopes, J. Glaciol., 41, 183–190, 1995.
Publications Copernicus
Special issue
Download
Short summary
We present a new water percolation routine added to the Crocus model. The new routine is physically based, describing motion of water through a layered snowpack considering capillary-driven and gravity flow. We tested the routine on two data sets. Wet-snow layers were able to reach higher saturations than the empirical routine. Meaningful applicability is limited until new and better parameterizations of water retention are developed, and feedbacks are adjusted to handle higher saturations.
We present a new water percolation routine added to the Crocus model. The new routine is...
Citation
Share