Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 10, issue 9 | Copyright
Geosci. Model Dev., 10, 3609-3634, 2017
https://doi.org/10.5194/gmd-10-3609-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Methods for assessment of models 29 Sep 2017

Methods for assessment of models | 29 Sep 2017

Changes in regional climate extremes as a function of global mean temperature: an interactive plotting framework

Richard Wartenburger et al.
Related authors
Varying soil moisture–atmosphere feedbacks explain divergent temperature extremes and precipitation projections in central Europe
Martha M. Vogel, Jakob Zscheischler, and Sonia I. Seneviratne
Earth Syst. Dynam., 9, 1107-1125, https://doi.org/10.5194/esd-9-1107-2018,https://doi.org/10.5194/esd-9-1107-2018, 2018
Does predictability of fluxes vary between FLUXNET sites?
Ned Haughton, Gab Abramowitz, Martin G. De Kauwe, and Andy J. Pitman
Biogeosciences, 15, 4495-4513, https://doi.org/10.5194/bg-15-4495-2018,https://doi.org/10.5194/bg-15-4495-2018, 2018
Potential of global land water recycling to mitigate local temperature extremes
Mathias Hauser, Wim Thiery, and Sonia Isabelle Seneviratne
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2018-48,https://doi.org/10.5194/esd-2018-48, 2018
Manuscript under review for ESD
A theoretical approach to assess soil moisture–climate coupling across CMIP5 and GLACE-CMIP5 experiments
Clemens Schwingshackl, Martin Hirschi, and Sonia I. Seneviratne
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2018-34,https://doi.org/10.5194/esd-2018-34, 2018
Revised manuscript accepted for ESD
The Global Streamflow Indices and Metadata Archive (GSIM) – Part 1: The production of a daily streamflow archive and metadata
Hong Xuan Do, Lukas Gudmundsson, Michael Leonard, and Seth Westra
Earth Syst. Sci. Data, 10, 765-785, https://doi.org/10.5194/essd-10-765-2018,https://doi.org/10.5194/essd-10-765-2018, 2018
Related subject area
Climate and Earth System Modeling
Requirements for a global data infrastructure in support of CMIP6
Venkatramani Balaji, Karl E. Taylor, Martin Juckes, Bryan N. Lawrence, Paul J. Durack, Michael Lautenschlager, Chris Blanton, Luca Cinquini, Sébastien Denvil, Mark Elkington, Francesca Guglielmo, Eric Guilyardi, David Hassell, Slava Kharin, Stefan Kindermann, Sergey Nikonov, Aparna Radhakrishnan, Martina Stockhause, Tobias Weigel, and Dean Williams
Geosci. Model Dev., 11, 3659-3680, https://doi.org/10.5194/gmd-11-3659-2018,https://doi.org/10.5194/gmd-11-3659-2018, 2018
Climate model configurations of the ECMWF Integrated Forecasting System (ECMWF-IFS cycle 43r1) for HighResMIP
Christopher D. Roberts, Retish Senan, Franco Molteni, Souhail Boussetta, Michael Mayer, and Sarah P. E. Keeley
Geosci. Model Dev., 11, 3681-3712, https://doi.org/10.5194/gmd-11-3681-2018,https://doi.org/10.5194/gmd-11-3681-2018, 2018
Using a virtual machine environment for developing, testing, and training for the UM-UKCA composition-climate model, using Unified Model version 10.9 and above
Nathan Luke Abraham, Alexander T. Archibald, Paul Cresswell, Sam Cusworth, Mohit Dalvi, David Matthews, Steven Wardle, and Stuart Whitehouse
Geosci. Model Dev., 11, 3647-3657, https://doi.org/10.5194/gmd-11-3647-2018,https://doi.org/10.5194/gmd-11-3647-2018, 2018
FAME (v1.0): a simple module to simulate the effect of planktonic foraminifer species-specific habitat on their oxygen isotopic content
Didier M. Roche, Claire Waelbroeck, Brett Metcalfe, and Thibaut Caley
Geosci. Model Dev., 11, 3587-3603, https://doi.org/10.5194/gmd-11-3587-2018,https://doi.org/10.5194/gmd-11-3587-2018, 2018
C-Coupler2: a flexible and user-friendly community coupler for model coupling and nesting
Li Liu, Cheng Zhang, Ruizhe Li, Bin Wang, and Guangwen Yang
Geosci. Model Dev., 11, 3557-3586, https://doi.org/10.5194/gmd-11-3557-2018,https://doi.org/10.5194/gmd-11-3557-2018, 2018
Cited articles
Benjamini, Y. and Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Stat. Soc., 57, 289–300, 1995.
Cowtan, K., Hausfather, Z., Hawkins, E., Jacobs, P., Mann, M. E., Miller, S. K., Steinman, B. A., Stolpe, M. B., and Way, R. G.: Robust comparison of climate models with observations using blended land air and ocean sea surface temperatures, Geophys. Res. Lett., 42, 2015GL064888, https://doi.org/10.1002/2015GL064888, 2015.
Fischer, E. M. and Knutti, R.: Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes, Nat. Clim. Change, 5, 560–564, https://doi.org/10.1038/nclimate2617, 2015.
Fischer, E. M., Sedlacek, J., Hawkins, E., and Knutti, R.: Models agree on forced response pattern of precipitation and temperature extremes, Geophys. Res. Lett., 41, 2014GL062018, https://doi.org/10.1002/2014GL062018, 2014.
Frieler, K., Meinshausen, M., Mengel, M., Braun, N., and Hare, W.: A scaling approach to probabilistic assessment of regional climate change, J. Climate, 25, 3117–3144, https://doi.org/10.1175/JCLI-D-11-00199.1, 2012.
Publications Copernicus
Download
Short summary
This article analyses regional changes in climate extremes as a function of projected changes in global mean temperature. We introduce the DROUGHT-HEAT Regional Climate Atlas, an interactive tool to analyse and display a range of well-established climate extremes and water-cycle indices and their changes as a function of global warming. Readers are encouraged to use the online tool for visualization of specific indices of interest, e.g. to assess their response to 1.5 or 2 °C global warming.
This article analyses regional changes in climate extremes as a function of projected changes in...
Citation
Share