Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
Volume 10, issue 10
Geosci. Model Dev., 10, 3695–3713, 2017
https://doi.org/10.5194/gmd-10-3695-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 10, 3695–3713, 2017
https://doi.org/10.5194/gmd-10-3695-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Methods for assessment of models 10 Oct 2017

Methods for assessment of models | 10 Oct 2017

Atmospheric inverse modeling via sparse reconstruction

Nils Hase et al.
Related authors  
Investigation of Arctic middle-atmospheric dynamics using 3 years of H2O and O3 measurements from microwave radiometers at Ny-Ålesund
Franziska Schranz, Brigitte Tschanz, Rolf Rüfenacht, Klemens Hocke, Mathias Palm, and Niklaus Kämpfer
Atmos. Chem. Phys., 19, 9927–9947, https://doi.org/10.5194/acp-19-9927-2019,https://doi.org/10.5194/acp-19-9927-2019, 2019
Short summary
Spectral Sizing of a Coarse Spectral Resolution Satellite Sensor for XCO2
Jonas Simon Wilzewski, Anke Roiger, Johan Strandgren, Jochen Landgraf, Dietrich G. Feist, Voltaire A. Velazco, Nicholas M. Deutscher, Isamu Morino, Hirofumi Ohyama, Yao Té, Rigel Kivi, Thorsten Warneke, Justus Notholt, Manvendra Dubey, Ralf Sussmann, Markus Rettinger, Frank Hase, Kei Shiomi, and André Butz
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-227,https://doi.org/10.5194/amt-2019-227, 2019
Manuscript under review for AMT
Ground-based millimetre-wave measurements of middle-atmospheric carbon monoxide above Ny-Ålesund (78.9° N, 11.9° E)
Niall J. Ryan, Mathias Palm, Christoph G. Hoffmann, Jens Goliasch, and Justus Notholt
Atmos. Meas. Tech., 12, 4077–4089, https://doi.org/10.5194/amt-12-4077-2019,https://doi.org/10.5194/amt-12-4077-2019, 2019
Short summary
TCCON and NDACC XCO measurements: difference, discussion and application
Minqiang Zhou, Bavo Langerock, Corinne Vigouroux, Mahesh Kumar Sha, Christian Hermans, Jean-Marc Metzger, Huilin Chen, Michel Ramonet, Rigel Kivi, Pauli Heikkinen, Dan Smale, David F. Pollard, Nicholas Jones, Voltaire A. Velazco, Omaira E. García, Matthias Schneider, Mathias Palm, Thorsten Warneke, and Martine De Mazière
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-266,https://doi.org/10.5194/amt-2019-266, 2019
Manuscript under review for AMT
Short summary
A scientific algorithm to simultaneously retrieve carbon monoxide and methane from TROPOMI onboard Sentinel-5 Precursor
Oliver Schneising, Michael Buchwitz, Maximilian Reuter, Heinrich Bovensmann, John P. Burrows, Tobias Borsdorff, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Christian Hermans, Laura T. Iraci, Rigel Kivi, Jochen Landgraf, Isamu Morino, Justus Notholt, Christof Petri, David F. Pollard, Sébastien Roche, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Voltaire A. Velazco, Thorsten Warneke, and Debra Wunch
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-243,https://doi.org/10.5194/amt-2019-243, 2019
Manuscript under review for AMT
Short summary
Related subject area  
Atmospheric Sciences
Revised treatment of wet scavenging processes dramatically improves GEOS-Chem 12.0.0 simulations of surface nitric acid, nitrate, and ammonium over the United States
Gan Luo, Fangqun Yu, and James Schwab
Geosci. Model Dev., 12, 3439–3447, https://doi.org/10.5194/gmd-12-3439-2019,https://doi.org/10.5194/gmd-12-3439-2019, 2019
Short summary
Assessment of wavelet-based spatial verification by means of a stochastic precipitation model (wv_verif v0.1.0)
Sebastian Buschow, Jakiw Pidstrigach, and Petra Friederichs
Geosci. Model Dev., 12, 3401–3418, https://doi.org/10.5194/gmd-12-3401-2019,https://doi.org/10.5194/gmd-12-3401-2019, 2019
Short summary
The Eulerian urban dispersion model EPISODE – Part 2: Extensions to the source dispersion and photochemistry for EPISODE–CityChem v1.2 and its application to the city of Hamburg
Matthias Karl, Sam-Erik Walker, Sverre Solberg, and Martin O. P. Ramacher
Geosci. Model Dev., 12, 3357–3399, https://doi.org/10.5194/gmd-12-3357-2019,https://doi.org/10.5194/gmd-12-3357-2019, 2019
Short summary
The FireWork v2.0 air quality forecast system with biomass burning emissions from the Canadian Forest Fire Emissions Prediction System v2.03
Jack Chen, Kerry Anderson, Radenko Pavlovic, Michael D. Moran, Peter Englefield, Dan K. Thompson, Rodrigo Munoz-Alpizar, and Hugo Landry
Geosci. Model Dev., 12, 3283–3310, https://doi.org/10.5194/gmd-12-3283-2019,https://doi.org/10.5194/gmd-12-3283-2019, 2019
Short summary
Simulating lightning NO production in CMAQv5.2: evolution of scientific updates
Daiwen Kang, Kenneth E. Pickering, Dale J. Allen, Kristen M. Foley, David C. Wong, Rohit Mathur, and Shawn J. Roselle
Geosci. Model Dev., 12, 3071–3083, https://doi.org/10.5194/gmd-12-3071-2019,https://doi.org/10.5194/gmd-12-3071-2019, 2019
Short summary
Cited articles  
Andrews, A. E., Kofler, J. D., Trudeau, M. E., Williams, J. C., Neff, D. H., Masarie, K. A., Chao, D. Y., Kitzis, D. R., Novelli, P. C., Zhao, C. L., Dlugokencky, E. J., Lang, P. M., Crotwell, M. J., Fischer, M. L., Parker, M. J., Lee, J. T., Baumann, D. D., Desai, A. R., Stanier, C. O., De Wekker, S. F. J., Wolfe, D. E., Munger, J. W., and Tans, P. P.: CO2, CO, and CH4 measurements from tall towers in the NOAA Earth System Research Laboratory's Global Greenhouse Gas Reference Network: instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts, Atmos. Meas. Tech., 7, 647–687, https://doi.org/10.5194/amt-7-647-2014, 2014.
Andrieu, C., de Freitas, N., Doucet, A., and Jordan, M. I.: An Introduction to MCMC for Machine Learning, Mach. Learn., 50, 5–43, https://doi.org/10.1023/A:1020281327116, 2003.
Banks, H., Holm, K., and Robbins, D.: Standard error computations for uncertainty quantification in inverse problems: Asymptotic theory vs. bootstrapping, Math. Comput. Model., 52, 1610–1625, https://doi.org/10.1016/j.mcm.2010.06.026, 2010.
Beck, A. and Teboulle, M.: A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, SIAM J. Img. Sci., 2, 183–202, https://doi.org/10.1137/080716542, 2009.
Biraud, S. C., Torn, M. S., Smith, J. R., Sweeney, C., Riley, W. J., and Tans, P. P.: A multi-year record of airborne CO2 observations in the US Southern Great Plains, Atmos. Meas. Tech., 6, 751–763, https://doi.org/10.5194/amt-6-751-2013, 2013.
Publications Copernicus
Download
Short summary
Inverse modeling uses atmospheric measurements to estimate emissions of greenhouse gases, which are key to understand the climate system. However, the measurement information alone is typically insufficient to provide reasonable emission estimates. Additional information is required. This article applies modern mathematical inversion techniques to formulate such additional knowledge. It is a prime example of how such tools can improve the quality of estimates compared to commonly used methods.
Inverse modeling uses atmospheric measurements to estimate emissions of greenhouse gases, which...
Citation