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1 Ill-posed inverse problems

In this section we characterize ill-posed inverse problems and illustrate their properties.

To keep it simple, we consider a linear inverse problem

Ax = yδ. (1)

of �nite dimensions, i.e. the forward model can be represented by a matrix A ∈ Rm×n.
A linear inverse problem is called well-posed in the sense of Hadamard, if

(a) there exists a solution x ∈ Rn for all data yδ ∈ Rm,

(b) the solution is unique and

(c) the inversion is stable, i.e. the solution depends continuously on the data.

If one of the above properties is not ful�lled, the problem is called ill-posed.

Typically, the forward model A is unable to explain the noise on the data. Consequently,

(a) is violated. Also, in most problems multiple measurements of the same parameters

will not give the same answer, which leads to an overdetermined linear system without

solution.

To guarantee the existence of a solution, one can replace the linear system (1) by the

least squares approach

x∗ = arg min
x∈Rn

1

2
‖Ax− yδ‖22. (2)

A minimum can be found, where the derivative of the least squares functional, Eq. (2),

is zero. This gives

At(Ax− yδ) = 0

⇔ AtAx = Atyδ. (3)
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Equation (3) is called the normal equation. If the matrix A does not have full rank, the

matrix AtA is not invertible. Consequently, there exists a nontrivial nullspace and the

least squares solution is nonunique. Also, the linear system (1) is underdetermined; there

is not enough information in the data to fully determine all parameters of the solution.

To avoid nonuniqueness of the least squares solution, one can select one of these solutions.

A common choice is the minimum norm solution

xMNS = arg min
x∗
‖x∗‖.

The inverse mapping, that maps any data vector yδ to the uniquely de�ned minimum

norm solution xMNS , is referred to as the pseudoinverse.

We derive an expression for the minimum norm solution based on singular value decom-

position, which states that every real matrix A can be decomposed into

A = UΣV t, (4)

where U ∈ Rm×m and V ∈ Rn×n are unitary matrices, i.e. U t = U−1, V t = V −1, and
Σ ∈ Rm×n is a matrix of zeros with the singular values on its diagonal. The singular

values σk are positive and in descending order, i.e. σ1 ≥ σ2 ≥ ... ≥ σr > 0, where
r = rank(A). The columns of U and V , u1, u2, ..., um and v1, v2, ..., vn, are the left
and right singular vectors, respectively. Left and right singular vectors each form an

orthonormal set.

As in the article we assume for the noisy data

yδ = Ax+ + δ

with the true solution x+. The given data thus consists of the simulated data to the

true solution and a noise component. In the following, we derive an expression for the

least squares solution and illustrate consequences of properties (b) and (c) on the solution.

With the help of the singular value decomposition, Eq. (4), the minimum norm solution

can be expressed by

xMNS =

r∑
k=1

1

σk
〈uk, yδ〉vk

=

r∑
k=1

1

σk
〈uk, Ax+ + δ〉vk

=

r∑
k=1

1

σk

(
〈uk,

r∑
k=1

σk〈vk, x+〉uk〉+ 〈uk, δ〉

)
vk

=

r∑
k=1

〈vk, x+〉vk +

r∑
k=1

1

σk
〈uk, δ〉vk.
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The minimum norm solution consists of a solution term and a noise term. The solution

term is the projection of the true solution x+ onto the subspace spanned by the r right
singular vectors. If the matrix A has full rank n, the solution term gives the true solution.

The noise term acts in the same subspace as the solution term, but the coe�cients are

de�ned by the scalar product of noise and left singular vectors and the factors 1
σk
. For

many ill-posed inverse problems, the singular values decrease rapidly towards zero. Thus,

the noise in the data is largely ampli�ed leading to estimates xMNS that are dominated

by noise.

For �nite dimensional problems, the stability of the pseudoinverse can be measured by

the condition number, cond(A) = σ1
σr
. The condition number ranges from one to techni-

cally in�nity and describes the maximal noise ampli�cation. Ill-posed inverse problems

violating property (c) have an in�nite condition number. Problems with �nite condition

number might technically be well-posed but are called ill-conditioned if the condition

number is large. Just as ill-posed problems, ill-conditioned problems require stabil inver-

sion methods.

The existence and the uniqueness property of a linear ill-posed inverse problem can be

�xed de�ning the minimum norm solution of the least squares problem. However, the

instability of the inversion requires special techniques such as Tikhonov regularization or

Bayesian inversion.

2 Emission estimates of other methods

Our atmospheric inverse modeling szenario is similar to the one used by Miller et al.

(2014). This allows a comparison between our inversion methods and the ones used in

the previous work. Figure 1 shows the estimates for the methods studied by Miller et al.

(2014) in the same colormap as in the main article.

3 Pseudocode for sparse dictionary reconstruction

The standard sparse reconstruction problem is given by

x∗ = arg min
x

1

2
‖Ax− yδ‖22 + α‖x‖1. (5)

The Fast Iterative Shrinkage Thresholding Algorithm (FISTA) (Beck and Teboulle, 2009)

is an e�cient solver for Eq. (5) for a �xed regularization parameter α. For the suggested
method L1 DIC POS, which we refer to as sparse dictionary reconstruction, we need to

solve the problem

x∗ = D

(
arg min

c

1

2
‖Lδ(ADc− yδ)‖22 + α‖c‖1

)
.

We apply FISTA with Ã = LδAD and ỹ = Lδyδ. To determine a suitable regulariza-

tion parameter, Morozov's discrepancy principle is applied. For this, we need to solve
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-120 -100 -80 -60

30

40

50

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

7molm!2s!1

Transform Inversion
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Gibbs Sampler

Figure 1: Emission estimates inverted from noisy simulated methane measurements using

the Standard Inversion, Lagrange Multiplier method, Transform Inversion and

the Gibbs Sampler as examined by Miller et al. (2014). The true �ux �eld

from the EDGAR inventory is shown in the article.

a sequence of problems (5). We force nonnegative parameters by setting all negative

parameters to zero in each iteration of FISTA. Algorithm 1 gives a detailed pseudocode.

We suggest to set q = 0.9, τ = 1.05 and max_iter = 250. c0 ∈ RN is typically just

a vector of zeros. The regularization parameter α needs to be chosen large enough,

such that the discrepancy principle in line 25 is not ful�lled in the �rst execution of the

while-loop. However, choosing it too large will require more executions of the while-loop.

In order to simplify the notation, we introduced K = LδAD. For large scale problems,
explicit computation of K in line 3 and its norm in line 5 might be impossible. However,

the matrix is never needed explicitly. The matrix-vector product Kc (and Kty) can

instead be performed in several steps Kx = Lδ(A(Dc)). Often, the matrices Lδ, A and

D are sparse (having many zero elements). Sparse matrix-vector products can speed-up

the execution. It is su�cient to estimate the spectral norm of K from above using the

Frobenius-norm.

As mentioned in the article the projection step in lines 17�. is critical. It involves

the problem of �nding a representation c in the dictionary to represent x+. As we are

interested in a sparse representation the most direct way would be to solve

c+ = arg min
c

1

2
‖Dc− x+‖2

2
+ α‖c‖1. (6)

We avoid solving another inverse problem to speed up the calculation. As our dictionary
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includes the pixel basis, �nding a dictionary representation c for any parameters x is

straightforward by working only on a subset I of all dictionary elements using only

those elements that represent the pixel basis. An identical mapping yields the dictionary

representation, ci = xi, i ∈ I, ci = 0, i /∈ I. For this approach there is no guarantee

that the representation remains sparse. However, the representation for an update of the

sinks c− should not have too many nonzero entries as no sinks are expected in the �nal

estimate. Our numerical experiments showed that such an update has an in�uence on the

�nal coe�cient estimate c∗, but the emission estimate x∗ = Dc∗ is virtually una�ected.

4 Source code

The most relevant parts of the source code to calculate emission estimates and generate

some basic graphics are available as a supplement. The code is written in Matlab 2014b

and commented. It consists of �ve data �les, three scripts and a number of functions

that are called by the scripts for calculation and plotting. To begin with, we recommend

exploring the scripts. These are:

• inverse_methods.m:

This script produces the �gures with the surface �ux estimates for all inversion

methods. The estimates for the Tikhonov based methods can either be calculated,

which requires a couple of minutes (< 15 min), or they can just be loaded from

the data �les (set �ag load_saved = 1).

• compare_results.m:

This script loads the estimates for all methods and calculates local, regional and

total measures of error.

• barnett_scenario.m:

This script produces the �gures for the Barnett scenario for all inversion methods.

Similarly to inverse_methods.m, the estimates for the Tikhonov based methods

can either be calculated or they can just be loaded from the data �les (set �ag

load_saved = 1).

For further questions please contact N. Hase (nilshase@math.uni-bremen.de).
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Algorithm 1 Sparse dictionary reconstruction

1: function [x∗, α∗] = L1 DIC POS(A,D,Lδ, y
δ, xa)

2: Set c0, α > 0, q < 1, τ > 1, max_iter, exit_flag = 0
3: K = LδAD
4: z = Lδ(y

δ −Axa)
5: β = 1

‖K‖2
6: while exit_flag == 0 do

7: cold = c0
8: c = c0
9: for k = 1, 2, ...,max_iter do

10: # Update step

11: ĉ = c+ k−2
k+1(c− cold), cold = c

12: c = ĉ− βKt(Kĉ− z)
13: # Shrinkage step

14: for i = 1, 2, ..., dim_c do
15: ci = sign(ci)max(|ci| − αβ, 0)
16: end for

17: # Projection step

18: x = Dc
19: x+ = P+(x), x− = x− x+
20: x− → c−

21: c = c− c−
22: end for

23: x∗ = Dc+ xa, α
∗ = α

24: # Morozov's discrepancy principle

25: if ‖Lδ(Ax∗ − yδ)‖2 < τ
√
dim_y then

26: exit_flag = 1
27: else

28: α = qα
29: end if

30: end while

return x∗, α∗

31: end function
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