Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 10, issue 10 | Copyright
Geosci. Model Dev., 10, 3805-3820, 2017
https://doi.org/10.5194/gmd-10-3805-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Methods for assessment of models 23 Oct 2017

Methods for assessment of models | 23 Oct 2017

Multivariable integrated evaluation of model performance with the vector field evaluation diagram

Zhongfeng Xu et al.
Related authors
A diagram for evaluating multiple aspects of model performance in simulating vector fields
Zhongfeng Xu, Zhaolu Hou, Ying Han, and Weidong Guo
Geosci. Model Dev., 9, 4365-4380, https://doi.org/10.5194/gmd-9-4365-2016,https://doi.org/10.5194/gmd-9-4365-2016, 2016
Related subject area
Climate and Earth System Modeling
Using a virtual machine environment for developing, testing, and training for the UM-UKCA composition-climate model, using Unified Model version 10.9 and above
Nathan Luke Abraham, Alexander T. Archibald, Paul Cresswell, Sam Cusworth, Mohit Dalvi, David Matthews, Steven Wardle, and Stuart Whitehouse
Geosci. Model Dev., 11, 3647-3657, https://doi.org/10.5194/gmd-11-3647-2018,https://doi.org/10.5194/gmd-11-3647-2018, 2018
FAME (v1.0): a simple module to simulate the effect of planktonic foraminifer species-specific habitat on their oxygen isotopic content
Didier M. Roche, Claire Waelbroeck, Brett Metcalfe, and Thibaut Caley
Geosci. Model Dev., 11, 3587-3603, https://doi.org/10.5194/gmd-11-3587-2018,https://doi.org/10.5194/gmd-11-3587-2018, 2018
C-Coupler2: a flexible and user-friendly community coupler for model coupling and nesting
Li Liu, Cheng Zhang, Ruizhe Li, Bin Wang, and Guangwen Yang
Geosci. Model Dev., 11, 3557-3586, https://doi.org/10.5194/gmd-11-3557-2018,https://doi.org/10.5194/gmd-11-3557-2018, 2018
Closing the energy balance using a canopy heat capacity and storage concept – a physically based approach for the land component JSBACHv3.11
Marvin Heidkamp, Andreas Chlond, and Felix Ament
Geosci. Model Dev., 11, 3465-3479, https://doi.org/10.5194/gmd-11-3465-2018,https://doi.org/10.5194/gmd-11-3465-2018, 2018
Portable multi- and many-core performance for finite-difference or finite-element codes – application to the free-surface component of NEMO (NEMOLite2D 1.0)
Andrew R. Porter, Jeremy Appleyard, Mike Ashworth, Rupert W. Ford, Jason Holt, Hedong Liu, and Graham D. Riley
Geosci. Model Dev., 11, 3447-3464, https://doi.org/10.5194/gmd-11-3447-2018,https://doi.org/10.5194/gmd-11-3447-2018, 2018
Cited articles
Chen, H. and Sun, J.: Assessing model performance of climate extremes in China: an intercomparison between CMIP5 and CMIP3, Climatic Change, 129, 197–211, 2015.
Eyring, V., Gleckler, P. J., Heinze, C., Stouffer, R. J., Taylor, K. E., Balaji, V., Guilyardi, E., Joussaume, S., Kindermann, S., Lawrence, B. N., Meehl, G. A., Righi, M., and Williams, D. N.: Towards improved and more routine Earth system model evaluation in CMIP, Earth Syst. Dynam., 7, 813–830, https://doi.org/10.5194/esd-7-813-2016, 2016.
Fan, Y. and van den Dool, H.: A global monthly land surface air temperature analysis for 1948–present, J. Geophys. Res., 113, D01103, https://doi.org/10.1029/2007JD008470, 2008.
Fu, C., Wang, S., Xiong, Z., Gutowski, W. J., Lee, D.-K., McGregor, J. L., Sato, Y., Kato, H., Kim, J.-W., and Suh, M.-S.: Regional Climate Model Intercomparison Project for Asia, B. Am. Meteorol. Soc., 86, 257–266, 2005.
Giorgi, F. and Gutowski, W. J.: Regional Dynamical Downscaling and the CORDEX Initiative, Annu. Rev. Environ. Res., 40, 467–490, 2015.
Publications Copernicus
Download
Short summary
The paper develops a multivariable integrated evaluation (MVIE) method for evaluating the overall performance of a climate model in simulating multiple fields. MVIE takes multiple statistics of multiple variables into account and is expected to provide a more accurate and comprehensive evaluation of model performance. Moreover, a multivariable integrated evaluation index (MIEI) is also developed to concisely summarize model performance and facilitate multi-model intercomparison and ranking.
The paper develops a multivariable integrated evaluation (MVIE) method for evaluating the...
Citation
Share