Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 10, issue 11 | Copyright
Geosci. Model Dev., 10, 4229-4244, 2017
https://doi.org/10.5194/gmd-10-4229-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model evaluation paper 23 Nov 2017

Model evaluation paper | 23 Nov 2017

Evaluation of the wind farm parameterization in the Weather Research and Forecasting model (version 3.8.1) with meteorological and turbine power data

Joseph C. Y. Lee and Julie K. Lundquist
Related authors
Characterization of flow recirculation zones in complex terrain using multi-lidar measurements
Robert Menke, Nikola Vasiljević, Jakob Mann, and Julie K. Lundquist
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-847,https://doi.org/10.5194/acp-2018-847, 2018
Manuscript under review for ACP
Assessing Variability of Wind Speed: Comparison and Validation of 27 Methodologies
Joseph C. Y. Lee, M. Jason Fields, and Julie K. Lundquist
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2018-49,https://doi.org/10.5194/wes-2018-49, 2018
Revised manuscript accepted for WES
Estimation of turbulence dissipation rate and its variability from sonic anemometer and wind Doppler lidar during the XPIA field campaign
Nicola Bodini, Julie K. Lundquist, and Rob K. Newsom
Atmos. Meas. Tech., 11, 4291-4308, https://doi.org/10.5194/amt-11-4291-2018,https://doi.org/10.5194/amt-11-4291-2018, 2018
Do Wind Turbines Pose Roll Hazards to Light Aircraft?
Jessica M. Tomaszewski, Julie K. Lundquist, Matthew J. Churchfield, and Patrick J. Moriarty
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2018-42,https://doi.org/10.5194/wes-2018-42, 2018
Revised manuscript accepted for WES
Generating wind power scenarios for probabilistic ramp event prediction using multivariate statistical post-processing
Rochelle P. Worsnop, Michael Scheuerer, Thomas M. Hamill, and Julie K. Lundquist
Wind Energ. Sci., 3, 371-393, https://doi.org/10.5194/wes-3-371-2018,https://doi.org/10.5194/wes-3-371-2018, 2018
Related subject area
Atmospheric Sciences
A representation of the collisional ice break-up process in the two-moment microphysics LIMA v1.0 scheme of Meso-NH
Thomas Hoarau, Jean-Pierre Pinty, and Christelle Barthe
Geosci. Model Dev., 11, 4269-4289, https://doi.org/10.5194/gmd-11-4269-2018,https://doi.org/10.5194/gmd-11-4269-2018, 2018
Evaluating simplified chemical mechanisms within present-day simulations of the Community Earth System Model version 1.2 with CAM4 (CESM1.2 CAM-chem): MOZART-4 vs. Reduced Hydrocarbon vs. Super-Fast chemistry
Benjamin Brown-Steiner, Noelle E. Selin, Ronald Prinn, Simone Tilmes, Louisa Emmons, Jean-François Lamarque, and Philip Cameron-Smith
Geosci. Model Dev., 11, 4155-4174, https://doi.org/10.5194/gmd-11-4155-2018,https://doi.org/10.5194/gmd-11-4155-2018, 2018
(GO)2-SIM: a GCM-oriented ground-observation forward-simulator framework for objective evaluation of cloud and precipitation phase
Katia Lamer, Ann M. Fridlind, Andrew S. Ackerman, Pavlos Kollias, Eugene E. Clothiaux, and Maxwell Kelley
Geosci. Model Dev., 11, 4195-4214, https://doi.org/10.5194/gmd-11-4195-2018,https://doi.org/10.5194/gmd-11-4195-2018, 2018
Development and implementation of a new biomass burning emissions injection height scheme (BBEIH v1.0) for the GEOS-Chem model (v9-01-01)
Liye Zhu, Maria Val Martin, Luciana V. Gatti, Ralph Kahn, Arsineh Hecobian, and Emily V. Fischer
Geosci. Model Dev., 11, 4103-4116, https://doi.org/10.5194/gmd-11-4103-2018,https://doi.org/10.5194/gmd-11-4103-2018, 2018
Comparison of dealiasing schemes in large-eddy simulation of neutrally stratified atmospheric flows
Fabien Margairaz, Marco G. Giometto, Marc B. Parlange, and Marc Calaf
Geosci. Model Dev., 11, 4069-4084, https://doi.org/10.5194/gmd-11-4069-2018,https://doi.org/10.5194/gmd-11-4069-2018, 2018
Cited articles
Abkar, M. and Porté-Agel, F.: A new wind-farm parameterization for large-scale atmospheric models, Journal of Renewable and Sustainable Energy, 7, 13121, https://doi.org/10.1063/1.4907600, 2015a.
Abkar, M. and Porté-Agel, F.: Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study, Phys. Fluids, 27, 35104, https://doi.org/10.1063/1.4913695, 2015b.
Aitken, M. L., Kosović, B., Mirocha, J. D., and Lundquist, J. K.: Large eddy simulation of wind turbine wake dynamics in the stable boundary layer using the Weather Research and Forecasting model, Journal of Renewable and Sustainable Energy, 6, 33137, https://doi.org/10.1063/1.4885111, 2014.
Baidya Roy, S.: Simulating impacts of wind farms on local hydrometeorology, J. Wind Eng. Ind. Aerod., 99, 491–498, https://doi.org/10.1016/j.jweia.2010.12.013, 2011.
Barrie, D. B. and Kirk-Davidoff, D. B.: Weather response to a large wind turbine array, Atmos. Chem. Phys., 10, 769–775, https://doi.org/10.5194/acp-10-769-2010, 2010.
Publications Copernicus
Download
Short summary
We evaluate the wind farm parameterization (WFP) in the Weather Research and Forecasting (WRF) model, a powerful tool to simulate wind farms and their meteorological impacts numerically. In our case study, the WFP simulations with fine vertical grid resolution are skilful in matching the observed winds and the actual power productions. Moreover, the WFP tends to underestimate power in windy conditions. We also illustrate that the modeled wind speed is a critical determinant to improve the WFP.
We evaluate the wind farm parameterization (WFP) in the Weather Research and Forecasting (WRF)...
Citation
Share