Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 10, issue 11 | Copyright
Geosci. Model Dev., 10, 4229-4244, 2017
https://doi.org/10.5194/gmd-10-4229-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model evaluation paper 23 Nov 2017

Model evaluation paper | 23 Nov 2017

Evaluation of the wind farm parameterization in the Weather Research and Forecasting model (version 3.8.1) with meteorological and turbine power data

Joseph C. Y. Lee and Julie K. Lundquist
Related authors
Do Wind Turbines Pose Roll Hazards to Light Aircraft?
Jessica M. Tomaszewski, Julie K. Lundquist, Matthew J. Churchfield, and Patrick J. Moriarty
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2018-42,https://doi.org/10.5194/wes-2018-42, 2018
Manuscript under review for WES
Generating wind power scenarios for probabilistic ramp event prediction using multivariate statistical post-processing
Rochelle P. Worsnop, Michael Scheuerer, Thomas M. Hamill, and Julie K. Lundquist
Wind Energ. Sci., 3, 371-393, https://doi.org/10.5194/wes-3-371-2018,https://doi.org/10.5194/wes-3-371-2018, 2018
Estimation of turbulence dissipation rate and its variability from sonic anemometer and wind Doppler lidar during the XPIA field campaign
Nicola Bodini, Julie K. Lundquist, and Rob K. Newsom
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-80,https://doi.org/10.5194/amt-2018-80, 2018
Revised manuscript accepted for AMT
Three-dimensional structure of wind turbine wakes as measured by scanning lidar
Nicola Bodini, Dino Zardi, and Julie K. Lundquist
Atmos. Meas. Tech., 10, 2881-2896, https://doi.org/10.5194/amt-10-2881-2017,https://doi.org/10.5194/amt-10-2881-2017, 2017
Atmospheric turbulence affects wind turbine nacelle transfer functions
Clara M. St. Martin, Julie K. Lundquist, Andrew Clifton, Gregory S. Poulos, and Scott J. Schreck
Wind Energ. Sci., 2, 295-306, https://doi.org/10.5194/wes-2-295-2017,https://doi.org/10.5194/wes-2-295-2017, 2017
Related subject area
Atmospheric Sciences
Adding four-dimensional data assimilation by analysis nudging to the Model for Prediction Across Scales – Atmosphere (version 4.0)
Orren Russell Bullock Jr., Hosein Foroutan, Robert C. Gilliam, and Jerold A. Herwehe
Geosci. Model Dev., 11, 2897-2922, https://doi.org/10.5194/gmd-11-2897-2018,https://doi.org/10.5194/gmd-11-2897-2018, 2018
Simulating atmospheric tracer concentrations for spatially distributed receptors: updates to the Stochastic Time-Inverted Lagrangian Transport model's R interface (STILT-R version 2)
Benjamin Fasoli, John C. Lin, David R. Bowling, Logan Mitchell, and Daniel Mendoza
Geosci. Model Dev., 11, 2813-2824, https://doi.org/10.5194/gmd-11-2813-2018,https://doi.org/10.5194/gmd-11-2813-2018, 2018
TOAST 1.0: Tropospheric Ozone Attribution of Sources with Tagging for CESM 1.2.2
Tim Butler, Aurelia Lupascu, Jane Coates, and Shuai Zhu
Geosci. Model Dev., 11, 2825-2840, https://doi.org/10.5194/gmd-11-2825-2018,https://doi.org/10.5194/gmd-11-2825-2018, 2018
MOPSMAP v1.0: a versatile tool for the modeling of aerosol optical properties
Josef Gasteiger and Matthias Wiegner
Geosci. Model Dev., 11, 2739-2762, https://doi.org/10.5194/gmd-11-2739-2018,https://doi.org/10.5194/gmd-11-2739-2018, 2018
An update on the RTTOV fast radiative transfer model (currently at version 12)
Roger Saunders, James Hocking, Emma Turner, Peter Rayer, David Rundle, Pascal Brunel, Jerome Vidot, Pascale Roquet, Marco Matricardi, Alan Geer, Niels Bormann, and Cristina Lupu
Geosci. Model Dev., 11, 2717-2737, https://doi.org/10.5194/gmd-11-2717-2018,https://doi.org/10.5194/gmd-11-2717-2018, 2018
Cited articles
Abkar, M. and Porté-Agel, F.: A new wind-farm parameterization for large-scale atmospheric models, Journal of Renewable and Sustainable Energy, 7, 13121, https://doi.org/10.1063/1.4907600, 2015a.
Abkar, M. and Porté-Agel, F.: Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study, Phys. Fluids, 27, 35104, https://doi.org/10.1063/1.4913695, 2015b.
Aitken, M. L., Kosović, B., Mirocha, J. D., and Lundquist, J. K.: Large eddy simulation of wind turbine wake dynamics in the stable boundary layer using the Weather Research and Forecasting model, Journal of Renewable and Sustainable Energy, 6, 33137, https://doi.org/10.1063/1.4885111, 2014.
Baidya Roy, S.: Simulating impacts of wind farms on local hydrometeorology, J. Wind Eng. Ind. Aerod., 99, 491–498, https://doi.org/10.1016/j.jweia.2010.12.013, 2011.
Barrie, D. B. and Kirk-Davidoff, D. B.: Weather response to a large wind turbine array, Atmos. Chem. Phys., 10, 769–775, https://doi.org/10.5194/acp-10-769-2010, 2010.
Publications Copernicus
Download
Short summary
We evaluate the wind farm parameterization (WFP) in the Weather Research and Forecasting (WRF) model, a powerful tool to simulate wind farms and their meteorological impacts numerically. In our case study, the WFP simulations with fine vertical grid resolution are skilful in matching the observed winds and the actual power productions. Moreover, the WFP tends to underestimate power in windy conditions. We also illustrate that the modeled wind speed is a critical determinant to improve the WFP.
We evaluate the wind farm parameterization (WFP) in the Weather Research and Forecasting (WRF)...
Citation
Share