Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year
    4.890
  • CiteScore value: 4.49 CiteScore
    4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 51 Scimago H
    index 51
Volume 10, issue 11
Geosci. Model Dev., 10, 4245-4256, 2017
https://doi.org/10.5194/gmd-10-4245-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 10, 4245-4256, 2017
https://doi.org/10.5194/gmd-10-4245-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.

Methods for assessment of models 24 Nov 2017

Methods for assessment of models | 24 Nov 2017

Source apportionment and sensitivity analysis: two methodologies with two different purposes

Alain Clappier et al.
Related authors  
Presentation of the EURODELTA III intercomparison exercise – evaluation of the chemistry transport models' performance on criteria pollutants and joint analysis with meteorology
Bertrand Bessagnet, Guido Pirovano, Mihaela Mircea, Cornelius Cuvelier, Armin Aulinger, Giuseppe Calori, Giancarlo Ciarelli, Astrid Manders, Rainer Stern, Svetlana Tsyro, Marta García Vivanco, Philippe Thunis, Maria-Teresa Pay, Augustin Colette, Florian Couvidat, Frédérik Meleux, Laurence Rouïl, Anthony Ung, Sebnem Aksoyoglu, José María Baldasano, Johannes Bieser, Gino Briganti, Andrea Cappelletti, Massimo D'Isidoro, Sandro Finardi, Richard Kranenburg, Camillo Silibello, Claudio Carnevale, Wenche Aas, Jean-Charles Dupont, Hilde Fagerli, Lucia Gonzalez, Laurent Menut, André S. H. Prévôt, Pete Roberts, and Les White
Atmos. Chem. Phys., 16, 12667-12701, https://doi.org/10.5194/acp-16-12667-2016,https://doi.org/10.5194/acp-16-12667-2016, 2016
Short summary
Modelling street level PM10 concentrations across Europe: source apportionment and possible futures
G. Kiesewetter, J. Borken-Kleefeld, W. Schöpp, C. Heyes, P. Thunis, B. Bessagnet, E. Terrenoire, H. Fagerli, A. Nyiri, and M. Amann
Atmos. Chem. Phys., 15, 1539-1553, https://doi.org/10.5194/acp-15-1539-2015,https://doi.org/10.5194/acp-15-1539-2015, 2015
Short summary
High-resolution air quality simulation over Europe with the chemistry transport model CHIMERE
E. Terrenoire, B. Bessagnet, L. Rouïl, F. Tognet, G. Pirovano, L. Létinois, M. Beauchamp, A. Colette, P. Thunis, M. Amann, and L. Menut
Geosci. Model Dev., 8, 21-42, https://doi.org/10.5194/gmd-8-21-2015,https://doi.org/10.5194/gmd-8-21-2015, 2015
Short summary
Modelling NO2 concentrations at the street level in the GAINS integrated assessment model: projections under current legislation
G. Kiesewetter, J. Borken-Kleefeld, W. Schöpp, C. Heyes, P. Thunis, B. Bessagnet, E. Terrenoire, A. Gsella, and M. Amann
Atmos. Chem. Phys., 14, 813-829, https://doi.org/10.5194/acp-14-813-2014,https://doi.org/10.5194/acp-14-813-2014, 2014
Related subject area  
Atmospheric Sciences
OLYMPUS v1.0: development of an integrated air pollutant and GHG urban emissions model – methodology and calibration over greater Paris
Arthur Elessa Etuman and Isabelle Coll
Geosci. Model Dev., 11, 5085-5111, https://doi.org/10.5194/gmd-11-5085-2018,https://doi.org/10.5194/gmd-11-5085-2018, 2018
Short summary
Two new submodels for the Modular Earth Submodel System (MESSy): New Aerosol Nucleation (NAN) and small ions (IONS) version 1.0
Sebastian Ehrhart, Eimear M. Dunne, Hanna E. Manninen, Tuomo Nieminen, Jos Lelieveld, and Andrea Pozzer
Geosci. Model Dev., 11, 4987-5001, https://doi.org/10.5194/gmd-11-4987-2018,https://doi.org/10.5194/gmd-11-4987-2018, 2018
Concentrations and radiative forcing of anthropogenic aerosols from 1750 to 2014 simulated with the Oslo CTM3 and CEDS emission inventory
Marianne Tronstad Lund, Gunnar Myhre, Amund Søvde Haslerud, Ragnhild Bieltvedt Skeie, Jan Griesfeller, Stephen Matthew Platt, Rajesh Kumar, Cathrine Lund Myhre, and Michael Schulz
Geosci. Model Dev., 11, 4909-4931, https://doi.org/10.5194/gmd-11-4909-2018,https://doi.org/10.5194/gmd-11-4909-2018, 2018
Short summary
A Lagrangian approach towards extracting signals of urban CO2 emissions from satellite observations of atmospheric column CO2 (XCO2): X-Stochastic Time-Inverted Lagrangian Transport model (“X-STILT v1”)
Dien Wu, John C. Lin, Benjamin Fasoli, Tomohiro Oda, Xinxin Ye, Thomas Lauvaux, Emily G. Yang, and Eric A. Kort
Geosci. Model Dev., 11, 4843-4871, https://doi.org/10.5194/gmd-11-4843-2018,https://doi.org/10.5194/gmd-11-4843-2018, 2018
Short summary
Adaptive Cartesian meshes for atmospheric single-column models: a study using Basilisk 18-02-16
J. Antoon van Hooft, Stéphane Popinet, and Bas J. H. van de Wiel
Geosci. Model Dev., 11, 4727-4738, https://doi.org/10.5194/gmd-11-4727-2018,https://doi.org/10.5194/gmd-11-4727-2018, 2018
Short summary
Cited articles  
Belis, C. A., Karagulian, F., Larsen, B. R., and Hopke, P. K.: Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe, Atmos. Environ., 69, 94–108, 2013.
Bhave, P. V., Pouliot, G. A., and Zheng, M.: Diagnostic model evaluation for carbonaceous PM2.5 using organic markers measured in the southeastern U.S., Environ. Sci. Technol., 41, 1577–1583, 2007.
Blanchard, C. L.: Methods for attributing ambient air pollutants to emission sources, Annu. Rev. Ener. Env., 24, 329–365, 1999.
Burr, M. J. and Zhang, Y.: Source-apportionment of fine particulate matter over the Eastern U.S. Part II: source apportionment simulations using CAMx/PSAT and comparisons with CMAQ source sensitivity simulations, Atmos. Pollut. Res., 2, 318–336, 2011a.
Burr, M. J. and Zhang, Y.: Source-apportionment of fine particulate matter over the Eastern U.S. Part II: source sensitivity simulations using CMAQ with the Brute Force method, Atmos. Pollut. Res., 2, 300–317, 2011b.
Publications Copernicus
Download
Short summary
This work demonstrates that when the relationship between emissions and concentrations is nonlinear, sensitivity approaches, generally used for air quality planning, are not suitable to retrieve source contributions and source apportionment methods are not appropriate to evaluate the impact of abatement strategies on air quality. A simple theoretical example is used highlighting differences and potential implications for policy.
This work demonstrates that when the relationship between emissions and concentrations is...
Citation
Share