Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 10, issue 11 | Copyright
Geosci. Model Dev., 10, 4245-4256, 2017
https://doi.org/10.5194/gmd-10-4245-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.

Methods for assessment of models 24 Nov 2017

Methods for assessment of models | 24 Nov 2017

Source apportionment and sensitivity analysis: two methodologies with two different purposes

Alain Clappier et al.
Related authors
Presentation of the EURODELTA III intercomparison exercise – evaluation of the chemistry transport models' performance on criteria pollutants and joint analysis with meteorology
Bertrand Bessagnet, Guido Pirovano, Mihaela Mircea, Cornelius Cuvelier, Armin Aulinger, Giuseppe Calori, Giancarlo Ciarelli, Astrid Manders, Rainer Stern, Svetlana Tsyro, Marta García Vivanco, Philippe Thunis, Maria-Teresa Pay, Augustin Colette, Florian Couvidat, Frédérik Meleux, Laurence Rouïl, Anthony Ung, Sebnem Aksoyoglu, José María Baldasano, Johannes Bieser, Gino Briganti, Andrea Cappelletti, Massimo D'Isidoro, Sandro Finardi, Richard Kranenburg, Camillo Silibello, Claudio Carnevale, Wenche Aas, Jean-Charles Dupont, Hilde Fagerli, Lucia Gonzalez, Laurent Menut, André S. H. Prévôt, Pete Roberts, and Les White
Atmos. Chem. Phys., 16, 12667-12701, https://doi.org/10.5194/acp-16-12667-2016,https://doi.org/10.5194/acp-16-12667-2016, 2016
Modelling street level PM10 concentrations across Europe: source apportionment and possible futures
G. Kiesewetter, J. Borken-Kleefeld, W. Schöpp, C. Heyes, P. Thunis, B. Bessagnet, E. Terrenoire, H. Fagerli, A. Nyiri, and M. Amann
Atmos. Chem. Phys., 15, 1539-1553, https://doi.org/10.5194/acp-15-1539-2015,https://doi.org/10.5194/acp-15-1539-2015, 2015
High-resolution air quality simulation over Europe with the chemistry transport model CHIMERE
E. Terrenoire, B. Bessagnet, L. Rouïl, F. Tognet, G. Pirovano, L. Létinois, M. Beauchamp, A. Colette, P. Thunis, M. Amann, and L. Menut
Geosci. Model Dev., 8, 21-42, https://doi.org/10.5194/gmd-8-21-2015,https://doi.org/10.5194/gmd-8-21-2015, 2015
Modelling NO2 concentrations at the street level in the GAINS integrated assessment model: projections under current legislation
G. Kiesewetter, J. Borken-Kleefeld, W. Schöpp, C. Heyes, P. Thunis, B. Bessagnet, E. Terrenoire, A. Gsella, and M. Amann
Atmos. Chem. Phys., 14, 813-829, https://doi.org/10.5194/acp-14-813-2014,https://doi.org/10.5194/acp-14-813-2014, 2014
Related subject area
Atmospheric Sciences
libcloudph++ 2.0: aqueous-phase chemistry extension of the particle-based cloud microphysics scheme
Anna Jaruga and Hanna Pawlowska
Geosci. Model Dev., 11, 3623-3645, https://doi.org/10.5194/gmd-11-3623-2018,https://doi.org/10.5194/gmd-11-3623-2018, 2018
CTDAS-Lagrange v1.0: a high-resolution data assimilation system for regional carbon dioxide observations
Wei He, Ivar R. van der Velde, Arlyn E. Andrews, Colm Sweeney, John Miller, Pieter Tans, Ingrid T. van der Laan-Luijkx, Thomas Nehrkorn, Marikate Mountain, Weimin Ju, Wouter Peters, and Huilin Chen
Geosci. Model Dev., 11, 3515-3536, https://doi.org/10.5194/gmd-11-3515-2018,https://doi.org/10.5194/gmd-11-3515-2018, 2018
Implementation of a simple thermodynamic sea ice scheme, SICE version 1.0-38h1, within the ALADIN–HIRLAM numerical weather prediction system version 38h1
Yurii Batrak, Ekaterina Kourzeneva, and Mariken Homleid
Geosci. Model Dev., 11, 3347-3368, https://doi.org/10.5194/gmd-11-3347-2018,https://doi.org/10.5194/gmd-11-3347-2018, 2018
ORACLE 2-D (v2.0): an efficient module to compute the volatility and oxygen content of organic aerosol with a global chemistry–climate model
Alexandra P. Tsimpidi, Vlassis A. Karydis, Andrea Pozzer, Spyros N. Pandis, and Jos Lelieveld
Geosci. Model Dev., 11, 3369-3389, https://doi.org/10.5194/gmd-11-3369-2018,https://doi.org/10.5194/gmd-11-3369-2018, 2018
Accelerating simulations using REDCHEM_v0.0 for atmospheric chemistry mechanism reduction
Zacharias Marinou Nikolaou, Jyh-Yuan Chen, Yiannis Proestos, Jos Lelieveld, and Rolf Sander
Geosci. Model Dev., 11, 3391-3407, https://doi.org/10.5194/gmd-11-3391-2018,https://doi.org/10.5194/gmd-11-3391-2018, 2018
Cited articles
Belis, C. A., Karagulian, F., Larsen, B. R., and Hopke, P. K.: Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe, Atmos. Environ., 69, 94–108, 2013.
Bhave, P. V., Pouliot, G. A., and Zheng, M.: Diagnostic model evaluation for carbonaceous PM2.5 using organic markers measured in the southeastern U.S., Environ. Sci. Technol., 41, 1577–1583, 2007.
Blanchard, C. L.: Methods for attributing ambient air pollutants to emission sources, Annu. Rev. Ener. Env., 24, 329–365, 1999.
Burr, M. J. and Zhang, Y.: Source-apportionment of fine particulate matter over the Eastern U.S. Part II: source apportionment simulations using CAMx/PSAT and comparisons with CMAQ source sensitivity simulations, Atmos. Pollut. Res., 2, 318–336, 2011a.
Burr, M. J. and Zhang, Y.: Source-apportionment of fine particulate matter over the Eastern U.S. Part II: source sensitivity simulations using CMAQ with the Brute Force method, Atmos. Pollut. Res., 2, 300–317, 2011b.
Publications Copernicus
Download
Short summary
This work demonstrates that when the relationship between emissions and concentrations is nonlinear, sensitivity approaches, generally used for air quality planning, are not suitable to retrieve source contributions and source apportionment methods are not appropriate to evaluate the impact of abatement strategies on air quality. A simple theoretical example is used highlighting differences and potential implications for policy.
This work demonstrates that when the relationship between emissions and concentrations is...
Citation
Share