Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 10, issue 11 | Copyright
Geosci. Model Dev., 10, 4285-4305, 2017
https://doi.org/10.5194/gmd-10-4285-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Methods for assessment of models 27 Nov 2017

Methods for assessment of models | 27 Nov 2017

The Cloud Feedback Model Intercomparison Project (CFMIP) Diagnostic Codes Catalogue – metrics, diagnostics and methodologies to evaluate, understand and improve the representation of clouds and cloud feedbacks in climate models

Yoko Tsushima et al.
Related authors
The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6
Mark J. Webb, Timothy Andrews, Alejandro Bodas-Salcedo, Sandrine Bony, Christopher S. Bretherton, Robin Chadwick, Hélène Chepfer, Hervé Douville, Peter Good, Jennifer E. Kay, Stephen A. Klein, Roger Marchand, Brian Medeiros, A. Pier Siebesma, Christopher B. Skinner, Bjorn Stevens, George Tselioudis, Yoko Tsushima, and Masahiro Watanabe
Geosci. Model Dev., 10, 359-384, https://doi.org/10.5194/gmd-10-359-2017,https://doi.org/10.5194/gmd-10-359-2017, 2017
Related subject area
Climate and Earth System Modeling
An EC-Earth coupled atmosphere–ocean single-column model (AOSCM.v1_EC-Earth3) for studying coupled marine and polar processes
Kerstin Hartung, Gunilla Svensson, Hamish Struthers, Anna-Lena Deppenmeier, and Wilco Hazeleger
Geosci. Model Dev., 11, 4117-4137, https://doi.org/10.5194/gmd-11-4117-2018,https://doi.org/10.5194/gmd-11-4117-2018, 2018
Development and evaluation of a variably saturated flow model in the global E3SM Land Model (ELM) version 1.0
Gautam Bisht, William J. Riley, Glenn E. Hammond, and David M. Lorenzetti
Geosci. Model Dev., 11, 4085-4102, https://doi.org/10.5194/gmd-11-4085-2018,https://doi.org/10.5194/gmd-11-4085-2018, 2018
Compact Modeling Framework v3.0 for high-resolution global ocean–ice–atmosphere models
Vladimir V. Kalmykov, Rashit A. Ibrayev, Maxim N. Kaurkin, and Konstantin V. Ushakov
Geosci. Model Dev., 11, 3983-3997, https://doi.org/10.5194/gmd-11-3983-2018,https://doi.org/10.5194/gmd-11-3983-2018, 2018
A production-tagged aerosol module for Earth system models, OsloAero5.3 – extensions and updates for CAM5.3-Oslo
Alf Kirkevåg, Alf Grini, Dirk Olivié, Øyvind Seland, Kari Alterskjær, Matthias Hummel, Inger H. H. Karset, Anna Lewinschal, Xiaohong Liu, Risto Makkonen, Ingo Bethke, Jan Griesfeller, Michael Schulz, and Trond Iversen
Geosci. Model Dev., 11, 3945-3982, https://doi.org/10.5194/gmd-11-3945-2018,https://doi.org/10.5194/gmd-11-3945-2018, 2018
LCice 1.0 – a generalized Ice Sheet System Model coupler for LOVECLIM version 1.3: description, sensitivities, and validation with the Glacial Systems Model (GSM version D2017.aug17)
Taimaz Bahadory and Lev Tarasov
Geosci. Model Dev., 11, 3883-3902, https://doi.org/10.5194/gmd-11-3883-2018,https://doi.org/10.5194/gmd-11-3883-2018, 2018
Cited articles
Anderberg, M.: Cluster analysis for applications, Academic Press, New York, 359 pp., 1973.
Barnes, E. and Polvani, L.: Response of the Midlatitude Jets, and of Their Variability, to Increased Greenhouse Gases in the CMIP5 Models, J. Climate, 26, 7117–7135, https://doi.org/10.1175/JCLI-D-12-00536.1, 2013.
Bennhold, F. and Sherwood, S.: Erroneous relationships among humidity and cloud forcing variables in three global climate models, J. Climate, 21, 4190–4206, https://doi.org/10.1175/2008JCLI1969.1, 2008.
Bodas-Salcedo, A., Webb, M., Bony, S., Chepfer, H., Dufresne, J., Klein, S., Zhang, Y., Marchand, R., Haynes, J., Pincus, R., and John, V.: COSP Satellite simulation software for model assessment, B. Am. Meteorol. Soc., 92, 1023–1043, https://doi.org/10.1175/2011BAMS2856.1, 2011.
Bodas-Salcedo, A., Williams, K., Field, P., and Lock, A.: The Surface Downwelling Solar Radiation Surplus over the Southern Ocean in the Met Office Model: The Role of Midlatitude Cyclone Clouds, J. Climate, 25, 7467–7486, https://doi.org/10.1175/JCLI-D-11-00702.1, 2012.
Publications Copernicus
Download
Short summary
Cloud feedback is the largest uncertainty associated with estimates of climate sensitivity. Diagnostics have been developed to evaluate cloud processes in climate models. For this understanding to be reflected in better estimates of cloud feedbacks, it is vital to continue to develop such tools and to exploit them fully during the model development process. Code repositories have been created to store and document the programs which will allow climate modellers to compute these diagnostics.
Cloud feedback is the largest uncertainty associated with estimates of climate sensitivity....
Citation
Share