Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 10, issue 12 | Copyright
Geosci. Model Dev., 10, 4419-4441, 2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Development and technical paper 05 Dec 2017

Development and technical paper | 05 Dec 2017

The ABC model: a non-hydrostatic toy model for use in convective-scale data assimilation investigations

Ruth Elizabeth Petrie et al.
Related authors
Methods of investigating forecast error sensitivity to ensemble size in a limited-area convection-permitting ensemble
Ross Noel Bannister, Stefano Migliorini, Alison Clare Rudd, and Laura Hart Baker
Geosci. Model Dev. Discuss.,,, 2017
Revised manuscript has not been submitted
Representation of model error in a convective-scale ensemble prediction system
L. H. Baker, A. C. Rudd, S. Migliorini, and R. N. Bannister
Nonlin. Processes Geophys., 21, 19-39,,, 2014
Related subject area
Atmospheric Sciences
libcloudph++ 2.0: aqueous-phase chemistry extension of the particle-based cloud microphysics scheme
Anna Jaruga and Hanna Pawlowska
Geosci. Model Dev., 11, 3623-3645,,, 2018
CTDAS-Lagrange v1.0: a high-resolution data assimilation system for regional carbon dioxide observations
Wei He, Ivar R. van der Velde, Arlyn E. Andrews, Colm Sweeney, John Miller, Pieter Tans, Ingrid T. van der Laan-Luijkx, Thomas Nehrkorn, Marikate Mountain, Weimin Ju, Wouter Peters, and Huilin Chen
Geosci. Model Dev., 11, 3515-3536,,, 2018
Implementation of a simple thermodynamic sea ice scheme, SICE version 1.0-38h1, within the ALADIN–HIRLAM numerical weather prediction system version 38h1
Yurii Batrak, Ekaterina Kourzeneva, and Mariken Homleid
Geosci. Model Dev., 11, 3347-3368,,, 2018
ORACLE 2-D (v2.0): an efficient module to compute the volatility and oxygen content of organic aerosol with a global chemistry–climate model
Alexandra P. Tsimpidi, Vlassis A. Karydis, Andrea Pozzer, Spyros N. Pandis, and Jos Lelieveld
Geosci. Model Dev., 11, 3369-3389,,, 2018
Accelerating simulations using REDCHEM_v0.0 for atmospheric chemistry mechanism reduction
Zacharias Marinou Nikolaou, Jyh-Yuan Chen, Yiannis Proestos, Jos Lelieveld, and Rolf Sander
Geosci. Model Dev., 11, 3391-3407,,, 2018
Cited articles
Ames, W. F.: Numerical Methods for Partial Differential Equations, Nelson, London, 1958.
Bannister, R. N.: A review of forecast error covariance statistics in atmospheric variational data assimilation. II: Modelling the forecast error covariance statistics, Q. J. Roy. Meteorol. Soc., 134, 1971–1996, 2008.
Bannister, R. N.: How is the Balance of a Forecast Ensemble Affected by Adaptive and Nonadaptive Localization Schemes?, Mon. Weather Rev., 143, 3680–3699, 2015.
Bannister, R. N.: A review of operational methods of variational and ensemble-variational data assimilation, Q. J. Roy. Meteorol. Soc., 143, 607–633,, 2017.
Bannister, R. N., Migliorini, S., and Dixon, M.: Ensemble prediction for nowcasting with a convection-permitting model – II: forecast error statistics, Tellus A, 63, 497–512, 2011.
Publications Copernicus
Short summary
The model and experiments in this paper are to study atmospheric flows on small (kilometre) scales. Compared to larger-scale flows, kilometre-scale motion is more difficult to predict, and geophysical balances are less valid. For these reasons, data assimilation (or DA, the task of using observations to initialise models) is more difficult, as the character of forecast errors (which have to be corrected by DA) is more difficult to represent. This model will be used to study small-scale DA.
The model and experiments in this paper are to study atmospheric flows on small (kilometre)...