Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year
    4.890
  • CiteScore value: 4.49 CiteScore
    4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 51 Scimago H
    index 51
Volume 10, issue 12
Geosci. Model Dev., 10, 4443-4476, 2017
https://doi.org/10.5194/gmd-10-4443-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 10, 4443-4476, 2017
https://doi.org/10.5194/gmd-10-4443-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 06 Dec 2017

Model description paper | 06 Dec 2017

A data-driven approach to identify controls on global fire activity from satellite and climate observations (SOFIA V1)

Matthias Forkel et al.
Related authors  
Improving the LPJmL4-SPITFIRE vegetation-fire model for South America using satellite data
Markus Drüke, Matthias Forkel, Werner von Bloh, Boris Sakschewski, Manoel Cardoso, Mercedes Bustamante, Jürgen Kurths, and Kirsten Thonicke
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-92,https://doi.org/10.5194/gmd-2019-92, 2019
Manuscript under review for GMD
Short summary
The Global Long-term Microwave Vegetation Optical Depth Climate Archive VODCA
Leander Moesinger, Wouter Dorigo, Richard de Jeu, Robin van der Schalie, Tracy Scanlon, Irene Teubner, and Matthias Forkel
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-42,https://doi.org/10.5194/essd-2019-42, 2019
Manuscript under review for ESSD
Short summary
Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models
Matthias Forkel, Niels Andela, Sandy P. Harrison, Gitta Lasslop, Margreet van Marle, Emilio Chuvieco, Wouter Dorigo, Matthew Forrest, Stijn Hantson, Angelika Heil, Fang Li, Joe Melton, Stephen Sitch, Chao Yue, and Almut Arneth
Biogeosciences, 16, 57-76, https://doi.org/10.5194/bg-16-57-2019,https://doi.org/10.5194/bg-16-57-2019, 2019
Short summary
LPJmL4 – a dynamic global vegetation model with managed land – Part 1: Model description
Sibyll Schaphoff, Werner von Bloh, Anja Rammig, Kirsten Thonicke, Hester Biemans, Matthias Forkel, Dieter Gerten, Jens Heinke, Jonas Jägermeyr, Jürgen Knauer, Fanny Langerwisch, Wolfgang Lucht, Christoph Müller, Susanne Rolinski, and Katharina Waha
Geosci. Model Dev., 11, 1343-1375, https://doi.org/10.5194/gmd-11-1343-2018,https://doi.org/10.5194/gmd-11-1343-2018, 2018
Short summary
LPJmL4 – a dynamic global vegetation model with managed land – Part 2: Model evaluation
Sibyll Schaphoff, Matthias Forkel, Christoph Müller, Jürgen Knauer, Werner von Bloh, Dieter Gerten, Jonas Jägermeyr, Wolfgang Lucht, Anja Rammig, Kirsten Thonicke, and Katharina Waha
Geosci. Model Dev., 11, 1377-1403, https://doi.org/10.5194/gmd-11-1377-2018,https://doi.org/10.5194/gmd-11-1377-2018, 2018
Short summary
Related subject area  
Biogeosciences
CO2 drawdown due to particle ballasting by glacial aeolian dust: an estimate based on the ocean carbon cycle model MPIOM/HAMOCC version 1.6.2p3
Malte Heinemann, Joachim Segschneider, and Birgit Schneider
Geosci. Model Dev., 12, 1869-1883, https://doi.org/10.5194/gmd-12-1869-2019,https://doi.org/10.5194/gmd-12-1869-2019, 2019
Short summary
Towards end-to-end (E2E) modelling in a consistent NPZD-F modelling framework (ECOSMO E2E_v1.0): application to the North Sea and Baltic Sea
Ute Daewel, Corinna Schrum, and Jed I. Macdonald
Geosci. Model Dev., 12, 1765-1789, https://doi.org/10.5194/gmd-12-1765-2019,https://doi.org/10.5194/gmd-12-1765-2019, 2019
Short summary
Evaluating the E3SM land model version 0 (ELMv0) at a temperate forest site using flux and soil water measurements
Junyi Liang, Gangsheng Wang, Daniel M. Ricciuto, Lianhong Gu, Paul J. Hanson, Jeffrey D. Wood, and Melanie A. Mayes
Geosci. Model Dev., 12, 1601-1612, https://doi.org/10.5194/gmd-12-1601-2019,https://doi.org/10.5194/gmd-12-1601-2019, 2019
Short summary
The [simple carbon project] model v1.0
Cameron M. O'Neill, Andrew McC. Hogg, Michael J. Ellwood, Stephen M. Eggins, and Bradley N. Opdyke
Geosci. Model Dev., 12, 1541-1572, https://doi.org/10.5194/gmd-12-1541-2019,https://doi.org/10.5194/gmd-12-1541-2019, 2019
Short summary
MAgPIE 4 – a modular open-source framework for modeling global land systems
Jan Philipp Dietrich, Benjamin Leon Bodirsky, Florian Humpenöder, Isabelle Weindl, Miodrag Stevanović, Kristine Karstens, Ulrich Kreidenweis, Xiaoxi Wang, Abhijeet Mishra, David Klein, Geanderson Ambrósio, Ewerton Araujo, Amsalu Woldie Yalew, Lavinia Baumstark, Stephen Wirth, Anastasis Giannousakis, Felicitas Beier, David Meng-Chuen Chen, Hermann Lotze-Campen, and Alexander Popp
Geosci. Model Dev., 12, 1299-1317, https://doi.org/10.5194/gmd-12-1299-2019,https://doi.org/10.5194/gmd-12-1299-2019, 2019
Short summary
Cited articles  
Albergel, C., Dorigo, W., Balsamo, G., Muñoz-Sabater, J., de Rosnay, P., Isaksen, L., Brocca, L., de Jeu, R., and Wagner, W.: Monitoring multi-decadal satellite earth observation of soil moisture products through land surface reanalyses, Remote Sens. Environ., 138, 77–89, https://doi.org/10.1016/j.rse.2013.07.009, 2013.
Aldersley, A., Murray, S. J., and Cornell, S. E.: Global and regional analysis of climate and human drivers of wildfire, Sci. Total Environ., 409, 3472–3481, https://doi.org/10.1016/j.scitotenv.2011.05.032, 2011.
Alonso-Canas, I. and Chuvieco, E.: Global burned area mapping from ENVISAT-MERIS and MODIS active fire data, Remote Sens. Environ., 163, 140–152, https://doi.org/10.1016/j.rse.2015.03.011, 2015.
Andela, N. and van der Werf, G. R.: Recent trends in African fires driven by cropland expansion and El Nino to La Nina transition, Nat. Clim. Change, 4, 791–795, https://doi.org/10.1038/nclimate2313, 2014.
Andela, N., Liu, Y. Y., van Dijk, A. I. J. M., de Jeu, R. A. M., and McVicar, T. R.: Global changes in dryland vegetation dynamics (1988–2008) assessed by satellite remote sensing: comparing a new passive microwave vegetation density record with reflective greenness data, Biogeosciences, 10, 6657–6676, https://doi.org/10.5194/bg-10-6657-2013, 2013.
Publications Copernicus
Download
Short summary
Wildfires affect infrastructures, vegetation, and the atmosphere. However, it is unclear how fires should be accurately represented in global vegetation models. We introduce here a new flexible data-driven fire modelling approach that allows us to explore sensitivities of burned areas to satellite and climate datasets. Our results suggest combining observations with data-driven and process-oriented fire models to better understand the role of fires in the Earth system.
Wildfires affect infrastructures, vegetation, and the atmosphere. However, it is unclear how...
Citation