Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 10, issue 12
Geosci. Model Dev., 10, 4443-4476, 2017
https://doi.org/10.5194/gmd-10-4443-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 10, 4443-4476, 2017
https://doi.org/10.5194/gmd-10-4443-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 06 Dec 2017

Model description paper | 06 Dec 2017

A data-driven approach to identify controls on global fire activity from satellite and climate observations (SOFIA V1)

Matthias Forkel et al.
Related authors  
Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models
Matthias Forkel, Niels Andela, Sandy P. Harrison, Gitta Lasslop, Margreet van Marle, Emilio Chuvieco, Wouter Dorigo, Matthew Forrest, Stijn Hantson, Angelika Heil, Fang Li, Joe Melton, Stephen Sitch, Chao Yue, and Almut Arneth
Biogeosciences, 16, 57-76, https://doi.org/10.5194/bg-16-57-2019,https://doi.org/10.5194/bg-16-57-2019, 2019
Short summary
LPJmL4 – a dynamic global vegetation model with managed land – Part 1: Model description
Sibyll Schaphoff, Werner von Bloh, Anja Rammig, Kirsten Thonicke, Hester Biemans, Matthias Forkel, Dieter Gerten, Jens Heinke, Jonas Jägermeyr, Jürgen Knauer, Fanny Langerwisch, Wolfgang Lucht, Christoph Müller, Susanne Rolinski, and Katharina Waha
Geosci. Model Dev., 11, 1343-1375, https://doi.org/10.5194/gmd-11-1343-2018,https://doi.org/10.5194/gmd-11-1343-2018, 2018
Short summary
LPJmL4 – a dynamic global vegetation model with managed land – Part 2: Model evaluation
Sibyll Schaphoff, Matthias Forkel, Christoph Müller, Jürgen Knauer, Werner von Bloh, Dieter Gerten, Jonas Jägermeyr, Wolfgang Lucht, Anja Rammig, Kirsten Thonicke, and Katharina Waha
Geosci. Model Dev., 11, 1377-1403, https://doi.org/10.5194/gmd-11-1377-2018,https://doi.org/10.5194/gmd-11-1377-2018, 2018
Short summary
A novel bias correction methodology for climate impact simulations
S. Sippel, F. E. L. Otto, M. Forkel, M. R. Allen, B. P. Guillod, M. Heimann, M. Reichstein, S. I. Seneviratne, K. Thonicke, and M. D. Mahecha
Earth Syst. Dynam., 7, 71-88, https://doi.org/10.5194/esd-7-71-2016,https://doi.org/10.5194/esd-7-71-2016, 2016
Short summary
Identifying environmental controls on vegetation greenness phenology through model–data integration
M. Forkel, N. Carvalhais, S. Schaphoff, W. v. Bloh, M. Migliavacca, M. Thurner, and K. Thonicke
Biogeosciences, 11, 7025-7050, https://doi.org/10.5194/bg-11-7025-2014,https://doi.org/10.5194/bg-11-7025-2014, 2014
Related subject area  
Biogeosciences
Representation of fire, land-use change and vegetation dynamics in the Joint UK Land Environment Simulator vn4.9 (JULES)
Chantelle Burton, Richard Betts, Manoel Cardoso, Ted R. Feldpausch, Anna Harper, Chris D. Jones, Douglas I. Kelley, Eddy Robertson, and Andy Wiltshire
Geosci. Model Dev., 12, 179-193, https://doi.org/10.5194/gmd-12-179-2019,https://doi.org/10.5194/gmd-12-179-2019, 2019
Short summary
Analysis fire patterns and drivers with a global SEVER-FIRE v1.0 model incorporated into dynamic global vegetation model and satellite and on-ground observations
Sergey Venevsky, Yannick Le Page, José M. C. Pereira, and Chao Wu
Geosci. Model Dev., 12, 89-110, https://doi.org/10.5194/gmd-12-89-2019,https://doi.org/10.5194/gmd-12-89-2019, 2019
Short summary
A generic pixel-to-point comparison for simulated large-scale ecosystem properties and ground-based observations: an example from the Amazon region
Anja Rammig, Jens Heinke, Florian Hofhansl, Hans Verbeeck, Timothy R. Baker, Bradley Christoffersen, Philippe Ciais, Hannes De Deurwaerder, Katrin Fleischer, David Galbraith, Matthieu Guimberteau, Andreas Huth, Michelle Johnson, Bart Krujit, Fanny Langerwisch, Patrick Meir, Phillip Papastefanou, Gilvan Sampaio, Kirsten Thonicke, Celso von Randow, Christian Zang, and Edna Rödig
Geosci. Model Dev., 11, 5203-5215, https://doi.org/10.5194/gmd-11-5203-2018,https://doi.org/10.5194/gmd-11-5203-2018, 2018
Short summary
Land surface model parameter optimisation using in situ flux data: comparison of gradient-based versus random search algorithms (a case study using ORCHIDEE v1.9.5.2)
Vladislav Bastrikov, Natasha MacBean, Cédric Bacour, Diego Santaren, Sylvain Kuppel, and Philippe Peylin
Geosci. Model Dev., 11, 4739-4754, https://doi.org/10.5194/gmd-11-4739-2018,https://doi.org/10.5194/gmd-11-4739-2018, 2018
Short summary
Modeling the effects of litter stoichiometry and soil mineral N availability on soil organic matter formation using CENTURY-CUE (v1.0)
Haicheng Zhang, Daniel S. Goll, Stefano Manzoni, Philippe Ciais, Bertrand Guenet, and Yuanyuan Huang
Geosci. Model Dev., 11, 4779-4796, https://doi.org/10.5194/gmd-11-4779-2018,https://doi.org/10.5194/gmd-11-4779-2018, 2018
Short summary
Cited articles  
Albergel, C., Dorigo, W., Balsamo, G., Muñoz-Sabater, J., de Rosnay, P., Isaksen, L., Brocca, L., de Jeu, R., and Wagner, W.: Monitoring multi-decadal satellite earth observation of soil moisture products through land surface reanalyses, Remote Sens. Environ., 138, 77–89, https://doi.org/10.1016/j.rse.2013.07.009, 2013.
Aldersley, A., Murray, S. J., and Cornell, S. E.: Global and regional analysis of climate and human drivers of wildfire, Sci. Total Environ., 409, 3472–3481, https://doi.org/10.1016/j.scitotenv.2011.05.032, 2011.
Alonso-Canas, I. and Chuvieco, E.: Global burned area mapping from ENVISAT-MERIS and MODIS active fire data, Remote Sens. Environ., 163, 140–152, https://doi.org/10.1016/j.rse.2015.03.011, 2015.
Andela, N. and van der Werf, G. R.: Recent trends in African fires driven by cropland expansion and El Nino to La Nina transition, Nat. Clim. Change, 4, 791–795, https://doi.org/10.1038/nclimate2313, 2014.
Andela, N., Liu, Y. Y., van Dijk, A. I. J. M., de Jeu, R. A. M., and McVicar, T. R.: Global changes in dryland vegetation dynamics (1988–2008) assessed by satellite remote sensing: comparing a new passive microwave vegetation density record with reflective greenness data, Biogeosciences, 10, 6657–6676, https://doi.org/10.5194/bg-10-6657-2013, 2013.
Publications Copernicus
Download
Short summary
Wildfires affect infrastructures, vegetation, and the atmosphere. However, it is unclear how fires should be accurately represented in global vegetation models. We introduce here a new flexible data-driven fire modelling approach that allows us to explore sensitivities of burned areas to satellite and climate datasets. Our results suggest combining observations with data-driven and process-oriented fire models to better understand the role of fires in the Earth system.
Wildfires affect infrastructures, vegetation, and the atmosphere. However, it is unclear how...
Citation
Share