Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 10, issue 12 | Copyright
Geosci. Model Dev., 10, 4511-4523, 2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Methods for assessment of models 08 Dec 2017

Methods for assessment of models | 08 Dec 2017

Sensitivity analysis of a coupled hydrodynamic-vegetation model using the effectively subsampled quadratures method (ESQM v5.2)

Tarandeep S. Kalra et al.
Related authors
Spatiotemporal variability of light attenuation and net ecosystem metabolism in a back-barrier estuary
Neil K. Ganju, Jeremy M. Testa, Steven E. Suttles, and Alfredo L. Aretxabaleta
Biogeosciences Discuss.,,, 2018
Manuscript under review for BG
Cohesive and mixed sediment in the Regional Ocean Modeling System (ROMS v3.6) implemented in the Coupled Ocean–Atmosphere–Wave–Sediment Transport Modeling System (COAWST r1234)
Christopher R. Sherwood, Alfredo L. Aretxabaleta, Courtney K. Harris, J. Paul Rinehimer, Romaric Verney, and Bénédicte Ferré
Geosci. Model Dev., 11, 1849-1871,,, 2018
Colored dissolved organic matter in shallow estuaries: relationships between carbon sources and light attenuation
W. K. Oestreich, N. K. Ganju, J. W. Pohlman, and S. E. Suttles
Biogeosciences, 13, 583-595,,, 2016
Temporal evolution of the momentum balance terms and frictional adjustment observed over the inner shelf during a storm
M. Grifoll, A. L. Aretxabaleta, J. L. Pelegrí, and M. Espino
Ocean Sci., 12, 137-151,,, 2016
Regime changes in global sea surface salinity trend
A. L. Aretxabaleta, K. W. Smith, and J. Ballabrera-Poy
Ocean Sci. Discuss.,,, 2015
Revised manuscript has not been submitted
Related subject area
Numerical Methods
Challenges and design choices for global weather and climate models based on machine learning
Peter D. Dueben and Peter Bauer
Geosci. Model Dev., 11, 3999-4009,,, 2018
The multi-assumption architecture and testbed (MAAT v1.0): R code for generating ensembles with dynamic model structure and analysis of epistemic uncertainty from multiple sources
Anthony P. Walker, Ming Ye, Dan Lu, Martin G. De Kauwe, Lianhong Gu, Belinda E. Medlyn, Alistair Rogers, and Shawn P. Serbin
Geosci. Model Dev., 11, 3159-3185,,, 2018
faSavageHutterFOAM 1.0: depth-integrated simulation of dense snow avalanches on natural terrain with OpenFOAM
Matthias Rauter, Andreas Kofler, Andreas Huber, and Wolfgang Fellin
Geosci. Model Dev., 11, 2923-2939,,, 2018
Plume-SPH 1.0: a three-dimensional, dusty-gas volcanic plume model based on smoothed particle hydrodynamics
Zhixuan Cao, Abani Patra, Marcus Bursik, E. Bruce Pitman, and Matthew Jones
Geosci. Model Dev., 11, 2691-2715,,, 2018
A conservative reconstruction scheme for the interpolation of extensive quantities in the Lagrangian particle dispersion model FLEXPART
Sabine Hittmeir, Anne Philipp, and Petra Seibert
Geosci. Model Dev., 11, 2503-2523,,, 2018
Cited articles
Aretxabaleta, A. L. and Smith, K. W.: Analyzing state-dependent model-data comparison in multi-regime systems, Computat. Geosci., 15, 627–636, 2011.
Bacchi, V., Gagnaire, E., Durand, N., and Benoit, M.: Wave energy dissipation in TOMAWAC, Telemac & Mascaret User Club, 15–17 October 2014, Grenoble, France, 2014.
Bastidas, L. A., Gupta, H. V., Sorooshian, S., Shuttleworth, W. J., and Yang, Z. L.: Sensitivity analysis of land surface scheme using multicriteria methods, J. Geophys. Res., 104, 481–490, 1999.
Beudin, A., Kalra, T. S., Ganju, N. K., and Warner, J. C.: Development of a Coupled Wave-Current-Vegetation Interaction, Comput. Geosci., 100, 76–86, 2017.
Booij, N., Ris, R. C., and Holthuijsen, L. H.: A third-generation wave model for coastal regions: 1. Model description and validation, J. Geophys. Res.-Oceans, 104, 7649–7666, 1999.
Publications Copernicus
Short summary
The paper details the sensitivity of vegetation properties that are input to a 3-D submerged aquatic vegetation model within a coupled hydrodynamics and wave model. It describes a novel strategy to perform sensitivity analysis efficiently by using a combination of the Effective Quadratures method and Sobol' indices. This method reduces the number of simulations to understand the sensitivity patterns and also quantifies the amount of sensitivity.
The paper details the sensitivity of vegetation properties that are input to a 3-D submerged...