Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
Volume 10, issue 12
Geosci. Model Dev., 10, 4563–4575, 2017
https://doi.org/10.5194/gmd-10-4563-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 10, 4563–4575, 2017
https://doi.org/10.5194/gmd-10-4563-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 15 Dec 2017

Model description paper | 15 Dec 2017

A method to encapsulate model structural uncertainty in ensemble projections of future climate: EPIC v1.0

Jared Lewis et al.
Related authors  
An updated version of a gap-free monthly mean zonal mean ozone database
Birgit Hassler, Stefanie Kremser, Greg E. Bodeker, Jared Lewis, Kage Nesbit, Sean M. Davis, Martyn P. Chipperfield, Sandip S. Dhomse, and Martin Dameris
Earth Syst. Sci. Data, 10, 1473–1490, https://doi.org/10.5194/essd-10-1473-2018,https://doi.org/10.5194/essd-10-1473-2018, 2018
Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations
Sandip S. Dhomse, Douglas Kinnison, Martyn P. Chipperfield, Ross J. Salawitch, Irene Cionni, Michaela I. Hegglin, N. Luke Abraham, Hideharu Akiyoshi, Alex T. Archibald, Ewa M. Bednarz, Slimane Bekki, Peter Braesicke, Neal Butchart, Martin Dameris, Makoto Deushi, Stacey Frith, Steven C. Hardiman, Birgit Hassler, Larry W. Horowitz, Rong-Ming Hu, Patrick Jöckel, Beatrice Josse, Oliver Kirner, Stefanie Kremser, Ulrike Langematz, Jared Lewis, Marion Marchand, Meiyun Lin, Eva Mancini, Virginie Marécal, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Laura E. Revell, Eugene Rozanov, Robyn Schofield, Andrea Stenke, Kane Stone, Kengo Sudo, Simone Tilmes, Daniele Visioni, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys., 18, 8409–8438, https://doi.org/10.5194/acp-18-8409-2018,https://doi.org/10.5194/acp-18-8409-2018, 2018
Short summary
A comparison of Loon balloon observations and stratospheric reanalysis products
Leon S. Friedrich, Adrian J. McDonald, Gregory E. Bodeker, Kathy E. Cooper, Jared Lewis, and Alexander J. Paterson
Atmos. Chem. Phys., 17, 855–866, https://doi.org/10.5194/acp-17-855-2017,https://doi.org/10.5194/acp-17-855-2017, 2017
Short summary
Validation of merged MSU4 and AMSU9 temperature climate records with a new 2002–2012 vertically resolved temperature record
A. A. Penckwitt, G. E. Bodeker, P. Stoll, J. Lewis, T. von Clarmann, and A. Jones
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-8-235-2015,https://doi.org/10.5194/amtd-8-235-2015, 2015
Publication in AMT not foreseen
Methodological aspects of a pattern-scaling approach to produce global fields of monthly means of daily maximum and minimum temperature
S. Kremser, G. E. Bodeker, and J. Lewis
Geosci. Model Dev., 7, 249–266, https://doi.org/10.5194/gmd-7-249-2014,https://doi.org/10.5194/gmd-7-249-2014, 2014
Related subject area  
Climate and Earth System Modeling
Update and evaluation of the ozone dry deposition in Oslo CTM3 v1.0
Stefanie Falk and Amund Søvde Haslerud
Geosci. Model Dev., 12, 4705–4728, https://doi.org/10.5194/gmd-12-4705-2019,https://doi.org/10.5194/gmd-12-4705-2019, 2019
Short summary
GlobSim (v1.0): deriving meteorological time series for point locations from multiple global reanalyses
Bin Cao, Xiaojing Quan, Nicholas Brown, Emilie Stewart-Jones, and Stephan Gruber
Geosci. Model Dev., 12, 4661–4679, https://doi.org/10.5194/gmd-12-4661-2019,https://doi.org/10.5194/gmd-12-4661-2019, 2019
Short summary
Model evaluation of high-resolution urban climate simulations: using the WRF/Noah LSM/SLUCM model (Version 3.7.1) as a case study
Zhiqiang Li, Yulun Zhou, Bingcheng Wan, Hopun Chung, Bo Huang, and Biao Liu
Geosci. Model Dev., 12, 4571–4584, https://doi.org/10.5194/gmd-12-4571-2019,https://doi.org/10.5194/gmd-12-4571-2019, 2019
Short summary
Developing and optimizing shrub parameters representing sagebrush (Artemisia spp.) ecosystems in the northern Great Basin using the Ecosystem Demography (EDv2.2) model
Karun Pandit, Hamid Dashti, Nancy F. Glenn, Alejandro N. Flores, Kaitlin C. Maguire, Douglas J. Shinneman, Gerald N. Flerchinger, and Aaron W. Fellows
Geosci. Model Dev., 12, 4585–4601, https://doi.org/10.5194/gmd-12-4585-2019,https://doi.org/10.5194/gmd-12-4585-2019, 2019
Short summary
Description and evaluation of the Diat-HadOCC model v1.0: the ocean biogeochemical component of HadGEM2-ES
Ian J. Totterdell
Geosci. Model Dev., 12, 4497–4549, https://doi.org/10.5194/gmd-12-4497-2019,https://doi.org/10.5194/gmd-12-4497-2019, 2019
Short summary
Cited articles  
Ackerley, D., Dean, S., Sood, A., and Mullan, A. B.: Regional climate modeling in NZ: comparison to gridded and satellite observations, Wea. Clim., 32, 3–22, 2012.
Bhaskaran, B., Mullan, A. B., and Renwick, J.: Modelling of atmospheric variation at NIWA, Wea. Clim., 19, 23–36, 1999.
Bhaskaran, B., Renwick, J., and Mullan, A. B.: On application of the Unified Model to produce finer scale climate information, Wea. Clim., 22, 19–27, 2002.
Bodeker, G. E. and Kremser, S.: Techniques for analyses of trends in GRUAN data, Atmos. Meas. Tech., 8, 1673–1684, https://doi.org/10.5194/amt-8-1673-2015, 2015.
Drost, F., Renwick, J., Bhaskaran, B., Oliver, H., and MacGregor, J. L.: Simulation of New Zealand's climate using a high-resolution nested regional climate model, Int. J. Climatol., 27, 1153–1169, 2007.
Publications Copernicus
Download
Short summary
The Ensemble Projections Incorporating Climate model uncertainty (EPIC) method uses climate pattern scaling to expand a small number of daily maximum and minimum surface temperature projections into an ensemble that captures the structural uncertainty between climate models. The method is useful for providing projections of changes in climate to users wishing to investigate the impacts of climate change in a probabilistic and computationally efficient way.
The Ensemble Projections Incorporating Climate model uncertainty (EPIC) method uses climate...
Citation