Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
Volume 10, issue 12
Geosci. Model Dev., 10, 4563–4575, 2017
https://doi.org/10.5194/gmd-10-4563-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 10, 4563–4575, 2017
https://doi.org/10.5194/gmd-10-4563-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 15 Dec 2017

Model description paper | 15 Dec 2017

A method to encapsulate model structural uncertainty in ensemble projections of future climate: EPIC v1.0

Jared Lewis et al.
Related authors  
An updated version of a gap-free monthly mean zonal mean ozone database
Birgit Hassler, Stefanie Kremser, Greg E. Bodeker, Jared Lewis, Kage Nesbit, Sean M. Davis, Martyn P. Chipperfield, Sandip S. Dhomse, and Martin Dameris
Earth Syst. Sci. Data, 10, 1473–1490, https://doi.org/10.5194/essd-10-1473-2018,https://doi.org/10.5194/essd-10-1473-2018, 2018
Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations
Sandip S. Dhomse, Douglas Kinnison, Martyn P. Chipperfield, Ross J. Salawitch, Irene Cionni, Michaela I. Hegglin, N. Luke Abraham, Hideharu Akiyoshi, Alex T. Archibald, Ewa M. Bednarz, Slimane Bekki, Peter Braesicke, Neal Butchart, Martin Dameris, Makoto Deushi, Stacey Frith, Steven C. Hardiman, Birgit Hassler, Larry W. Horowitz, Rong-Ming Hu, Patrick Jöckel, Beatrice Josse, Oliver Kirner, Stefanie Kremser, Ulrike Langematz, Jared Lewis, Marion Marchand, Meiyun Lin, Eva Mancini, Virginie Marécal, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Laura E. Revell, Eugene Rozanov, Robyn Schofield, Andrea Stenke, Kane Stone, Kengo Sudo, Simone Tilmes, Daniele Visioni, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys., 18, 8409–8438, https://doi.org/10.5194/acp-18-8409-2018,https://doi.org/10.5194/acp-18-8409-2018, 2018
Short summary
A comparison of Loon balloon observations and stratospheric reanalysis products
Leon S. Friedrich, Adrian J. McDonald, Gregory E. Bodeker, Kathy E. Cooper, Jared Lewis, and Alexander J. Paterson
Atmos. Chem. Phys., 17, 855–866, https://doi.org/10.5194/acp-17-855-2017,https://doi.org/10.5194/acp-17-855-2017, 2017
Short summary
Validation of merged MSU4 and AMSU9 temperature climate records with a new 2002–2012 vertically resolved temperature record
A. A. Penckwitt, G. E. Bodeker, P. Stoll, J. Lewis, T. von Clarmann, and A. Jones
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-8-235-2015,https://doi.org/10.5194/amtd-8-235-2015, 2015
Publication in AMT not foreseen
Methodological aspects of a pattern-scaling approach to produce global fields of monthly means of daily maximum and minimum temperature
S. Kremser, G. E. Bodeker, and J. Lewis
Geosci. Model Dev., 7, 249–266, https://doi.org/10.5194/gmd-7-249-2014,https://doi.org/10.5194/gmd-7-249-2014, 2014
Related subject area  
Climate and Earth System Modeling
Scalability and some optimization of the Finite-volumE Sea ice–Ocean Model, Version 2.0 (FESOM2)
Nikolay V. Koldunov, Vadym Aizinger, Natalja Rakowsky, Patrick Scholz, Dmitry Sidorenko, Sergey Danilov, and Thomas Jung
Geosci. Model Dev., 12, 3991–4012, https://doi.org/10.5194/gmd-12-3991-2019,https://doi.org/10.5194/gmd-12-3991-2019, 2019
Short summary
Developing a monthly radiative kernel for surface albedo change from satellite climatologies of Earth's shortwave radiation budget: CACK v1.0
Ryan M. Bright and Thomas L. O'Halloran
Geosci. Model Dev., 12, 3975–3990, https://doi.org/10.5194/gmd-12-3975-2019,https://doi.org/10.5194/gmd-12-3975-2019, 2019
Short summary
Toward an open access to high-frequency lake modeling and statistics data for scientists and practitioners – the case of Swiss lakes using Simstrat v2.1
Adrien Gaudard, Love Råman Vinnå, Fabian Bärenbold, Martin Schmid, and Damien Bouffard
Geosci. Model Dev., 12, 3955–3974, https://doi.org/10.5194/gmd-12-3955-2019,https://doi.org/10.5194/gmd-12-3955-2019, 2019
Short summary
Paleo calendar-effect adjustments in time-slice and transient climate-model simulations (PaleoCalAdjust v1.0): impact and strategies for data analysis
Patrick J. Bartlein and Sarah L. Shafer
Geosci. Model Dev., 12, 3889–3913, https://doi.org/10.5194/gmd-12-3889-2019,https://doi.org/10.5194/gmd-12-3889-2019, 2019
Short summary
TheDiaTo (v1.0) – a new diagnostic tool for water, energy and entropy budgets in climate models
Valerio Lembo, Frank Lunkeit, and Valerio Lucarini
Geosci. Model Dev., 12, 3805–3834, https://doi.org/10.5194/gmd-12-3805-2019,https://doi.org/10.5194/gmd-12-3805-2019, 2019
Short summary
Cited articles  
Ackerley, D., Dean, S., Sood, A., and Mullan, A. B.: Regional climate modeling in NZ: comparison to gridded and satellite observations, Wea. Clim., 32, 3–22, 2012.
Bhaskaran, B., Mullan, A. B., and Renwick, J.: Modelling of atmospheric variation at NIWA, Wea. Clim., 19, 23–36, 1999.
Bhaskaran, B., Renwick, J., and Mullan, A. B.: On application of the Unified Model to produce finer scale climate information, Wea. Clim., 22, 19–27, 2002.
Bodeker, G. E. and Kremser, S.: Techniques for analyses of trends in GRUAN data, Atmos. Meas. Tech., 8, 1673–1684, https://doi.org/10.5194/amt-8-1673-2015, 2015.
Drost, F., Renwick, J., Bhaskaran, B., Oliver, H., and MacGregor, J. L.: Simulation of New Zealand's climate using a high-resolution nested regional climate model, Int. J. Climatol., 27, 1153–1169, 2007.
Publications Copernicus
Download
Short summary
The Ensemble Projections Incorporating Climate model uncertainty (EPIC) method uses climate pattern scaling to expand a small number of daily maximum and minimum surface temperature projections into an ensemble that captures the structural uncertainty between climate models. The method is useful for providing projections of changes in climate to users wishing to investigate the impacts of climate change in a probabilistic and computationally efficient way.
The Ensemble Projections Incorporating Climate model uncertainty (EPIC) method uses climate...
Citation