Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 10, issue 12 | Copyright
Geosci. Model Dev., 10, 4563-4575, 2017
https://doi.org/10.5194/gmd-10-4563-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 15 Dec 2017

Model description paper | 15 Dec 2017

A method to encapsulate model structural uncertainty in ensemble projections of future climate: EPIC v1.0

Jared Lewis et al.
Related authors
An updated version of a gap-free monthly mean zonal mean ozone database
Birgit Hassler, Stefanie Kremser, Greg E. Bodeker, Jared Lewis, Kage Nesbit, Sean M. Davis, Martyn P. Chipperfield, Sandip S. Dhomse, and Martin Dameris
Earth Syst. Sci. Data, 10, 1473-1490, https://doi.org/10.5194/essd-10-1473-2018,https://doi.org/10.5194/essd-10-1473-2018, 2018
Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations
Sandip S. Dhomse, Douglas Kinnison, Martyn P. Chipperfield, Ross J. Salawitch, Irene Cionni, Michaela I. Hegglin, N. Luke Abraham, Hideharu Akiyoshi, Alex T. Archibald, Ewa M. Bednarz, Slimane Bekki, Peter Braesicke, Neal Butchart, Martin Dameris, Makoto Deushi, Stacey Frith, Steven C. Hardiman, Birgit Hassler, Larry W. Horowitz, Rong-Ming Hu, Patrick Jöckel, Beatrice Josse, Oliver Kirner, Stefanie Kremser, Ulrike Langematz, Jared Lewis, Marion Marchand, Meiyun Lin, Eva Mancini, Virginie Marécal, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Laura E. Revell, Eugene Rozanov, Robyn Schofield, Andrea Stenke, Kane Stone, Kengo Sudo, Simone Tilmes, Daniele Visioni, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys., 18, 8409-8438, https://doi.org/10.5194/acp-18-8409-2018,https://doi.org/10.5194/acp-18-8409-2018, 2018
A comparison of Loon balloon observations and stratospheric reanalysis products
Leon S. Friedrich, Adrian J. McDonald, Gregory E. Bodeker, Kathy E. Cooper, Jared Lewis, and Alexander J. Paterson
Atmos. Chem. Phys., 17, 855-866, https://doi.org/10.5194/acp-17-855-2017,https://doi.org/10.5194/acp-17-855-2017, 2017
Validation of merged MSU4 and AMSU9 temperature climate records with a new 2002–2012 vertically resolved temperature record
A. A. Penckwitt, G. E. Bodeker, P. Stoll, J. Lewis, T. von Clarmann, and A. Jones
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-8-235-2015,https://doi.org/10.5194/amtd-8-235-2015, 2015
Publication in AMT not foreseen
Methodological aspects of a pattern-scaling approach to produce global fields of monthly means of daily maximum and minimum temperature
S. Kremser, G. E. Bodeker, and J. Lewis
Geosci. Model Dev., 7, 249-266, https://doi.org/10.5194/gmd-7-249-2014,https://doi.org/10.5194/gmd-7-249-2014, 2014
Related subject area
Climate and Earth System Modeling
Requirements for a global data infrastructure in support of CMIP6
Venkatramani Balaji, Karl E. Taylor, Martin Juckes, Bryan N. Lawrence, Paul J. Durack, Michael Lautenschlager, Chris Blanton, Luca Cinquini, Sébastien Denvil, Mark Elkington, Francesca Guglielmo, Eric Guilyardi, David Hassell, Slava Kharin, Stefan Kindermann, Sergey Nikonov, Aparna Radhakrishnan, Martina Stockhause, Tobias Weigel, and Dean Williams
Geosci. Model Dev., 11, 3659-3680, https://doi.org/10.5194/gmd-11-3659-2018,https://doi.org/10.5194/gmd-11-3659-2018, 2018
Climate model configurations of the ECMWF Integrated Forecasting System (ECMWF-IFS cycle 43r1) for HighResMIP
Christopher D. Roberts, Retish Senan, Franco Molteni, Souhail Boussetta, Michael Mayer, and Sarah P. E. Keeley
Geosci. Model Dev., 11, 3681-3712, https://doi.org/10.5194/gmd-11-3681-2018,https://doi.org/10.5194/gmd-11-3681-2018, 2018
Using a virtual machine environment for developing, testing, and training for the UM-UKCA composition-climate model, using Unified Model version 10.9 and above
Nathan Luke Abraham, Alexander T. Archibald, Paul Cresswell, Sam Cusworth, Mohit Dalvi, David Matthews, Steven Wardle, and Stuart Whitehouse
Geosci. Model Dev., 11, 3647-3657, https://doi.org/10.5194/gmd-11-3647-2018,https://doi.org/10.5194/gmd-11-3647-2018, 2018
FAME (v1.0): a simple module to simulate the effect of planktonic foraminifer species-specific habitat on their oxygen isotopic content
Didier M. Roche, Claire Waelbroeck, Brett Metcalfe, and Thibaut Caley
Geosci. Model Dev., 11, 3587-3603, https://doi.org/10.5194/gmd-11-3587-2018,https://doi.org/10.5194/gmd-11-3587-2018, 2018
C-Coupler2: a flexible and user-friendly community coupler for model coupling and nesting
Li Liu, Cheng Zhang, Ruizhe Li, Bin Wang, and Guangwen Yang
Geosci. Model Dev., 11, 3557-3586, https://doi.org/10.5194/gmd-11-3557-2018,https://doi.org/10.5194/gmd-11-3557-2018, 2018
Cited articles
Ackerley, D., Dean, S., Sood, A., and Mullan, A. B.: Regional climate modeling in NZ: comparison to gridded and satellite observations, Wea. Clim., 32, 3–22, 2012.
Bhaskaran, B., Mullan, A. B., and Renwick, J.: Modelling of atmospheric variation at NIWA, Wea. Clim., 19, 23–36, 1999.
Bhaskaran, B., Renwick, J., and Mullan, A. B.: On application of the Unified Model to produce finer scale climate information, Wea. Clim., 22, 19–27, 2002.
Bodeker, G. E. and Kremser, S.: Techniques for analyses of trends in GRUAN data, Atmos. Meas. Tech., 8, 1673–1684, https://doi.org/10.5194/amt-8-1673-2015, 2015.
Drost, F., Renwick, J., Bhaskaran, B., Oliver, H., and MacGregor, J. L.: Simulation of New Zealand's climate using a high-resolution nested regional climate model, Int. J. Climatol., 27, 1153–1169, 2007.
Publications Copernicus
Download
Short summary
The Ensemble Projections Incorporating Climate model uncertainty (EPIC) method uses climate pattern scaling to expand a small number of daily maximum and minimum surface temperature projections into an ensemble that captures the structural uncertainty between climate models. The method is useful for providing projections of changes in climate to users wishing to investigate the impacts of climate change in a probabilistic and computationally efficient way.
The Ensemble Projections Incorporating Climate model uncertainty (EPIC) method uses climate...
Citation
Share