Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 10, issue 12 | Copyright

Special issue: The Lagrangian particle dispersion model FLEXPART

Geosci. Model Dev., 10, 4605-4618, 2017
https://doi.org/10.5194/gmd-10-4605-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Development and technical paper 18 Dec 2017

Development and technical paper | 18 Dec 2017

Source–receptor matrix calculation for deposited mass with the Lagrangian particle dispersion model FLEXPART v10.2 in backward mode

Sabine Eckhardt et al.
Related authors
Top–down estimates of black carbon emissions at high latitudes using an atmospheric transport model and a Bayesian inversion framework
Nikolaos Evangeliou, Rona L. Thompson, Sabine Eckhardt, and Andreas Stohl
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-643,https://doi.org/10.5194/acp-2018-643, 2018
Manuscript under review for ACP
Methane at Svalbard and over the European Arctic Ocean
Stephen M. Platt, Sabine Eckhardt, Benedicte Ferré, Rebecca E. Fisher, Ove Hermansen, Pär Jansson, David Lowry, Euan G. Nisbet, Ignacio Pisso, Norbert Schmidbauer, Anna Silyakova, Andreas Stohl, Tove M. Svendby, Sunil Vadakkepuliyambatta, Jürgen Mienert, and Cathrine Lund Myhre
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-597,https://doi.org/10.5194/acp-2018-597, 2018
Manuscript under review for ACP
A satellite-based estimate of aerosol-cloud microphysical effects over the Arctic Ocean
Lauren M. Zamora, Ralph A. Kahn, Klaus B. Huebert, Andreas Stohl, and Sabine Eckhardt
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-514,https://doi.org/10.5194/acp-2018-514, 2018
Manuscript under review for ACP
Open fires in Greenland: an unusual event and its impact on the albedo of the Greenland Ice Sheet
Nikolaos Evangeliou, Arve Kylling, Sabine Eckhardt, Viktor Myroniuk, Kerstin Stebel, Ronan Paugam, Sergiy Zibtsev, and Andreas Stohl
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-94,https://doi.org/10.5194/acp-2018-94, 2018
Revised manuscript under review for ACP
Origin of elemental carbon in snow from western Siberia and northwestern European Russia during winter–spring 2014, 2015 and 2016
Nikolaos Evangeliou, Vladimir P. Shevchenko, Karl Espen Yttri, Sabine Eckhardt, Espen Sollum, Oleg S. Pokrovsky, Vasily O. Kobelev, Vladimir B. Korobov, Andrey A. Lobanov, Dina P. Starodymova, Sergey N. Vorobiev, Rona L. Thompson, and Andreas Stohl
Atmos. Chem. Phys., 18, 963-977, https://doi.org/10.5194/acp-18-963-2018,https://doi.org/10.5194/acp-18-963-2018, 2018
Related subject area
Atmospheric Sciences
Assimilating compact phase space retrievals (CPSRs): comparison with independent observations (MOZAIC in situ and IASI retrievals) and extension to assimilation of truncated retrieval profiles
Arthur P. Mizzi, David P. Edwards, and Jeffrey L. Anderson
Geosci. Model Dev., 11, 3727-3745, https://doi.org/10.5194/gmd-11-3727-2018,https://doi.org/10.5194/gmd-11-3727-2018, 2018
libcloudph++ 2.0: aqueous-phase chemistry extension of the particle-based cloud microphysics scheme
Anna Jaruga and Hanna Pawlowska
Geosci. Model Dev., 11, 3623-3645, https://doi.org/10.5194/gmd-11-3623-2018,https://doi.org/10.5194/gmd-11-3623-2018, 2018
CTDAS-Lagrange v1.0: a high-resolution data assimilation system for regional carbon dioxide observations
Wei He, Ivar R. van der Velde, Arlyn E. Andrews, Colm Sweeney, John Miller, Pieter Tans, Ingrid T. van der Laan-Luijkx, Thomas Nehrkorn, Marikate Mountain, Weimin Ju, Wouter Peters, and Huilin Chen
Geosci. Model Dev., 11, 3515-3536, https://doi.org/10.5194/gmd-11-3515-2018,https://doi.org/10.5194/gmd-11-3515-2018, 2018
Implementation of a simple thermodynamic sea ice scheme, SICE version 1.0-38h1, within the ALADIN–HIRLAM numerical weather prediction system version 38h1
Yurii Batrak, Ekaterina Kourzeneva, and Mariken Homleid
Geosci. Model Dev., 11, 3347-3368, https://doi.org/10.5194/gmd-11-3347-2018,https://doi.org/10.5194/gmd-11-3347-2018, 2018
ORACLE 2-D (v2.0): an efficient module to compute the volatility and oxygen content of organic aerosol with a global chemistry–climate model
Alexandra P. Tsimpidi, Vlassis A. Karydis, Andrea Pozzer, Spyros N. Pandis, and Jos Lelieveld
Geosci. Model Dev., 11, 3369-3389, https://doi.org/10.5194/gmd-11-3369-2018,https://doi.org/10.5194/gmd-11-3369-2018, 2018
Cited articles
Bory, A. J. M., Biscaye, P. E., Svensson, A., and Grousset, F. E.: Seasonal variability in the origin of recent atmospheric mineral dust at NorthGRIP, Greenland, Earth Planet. Sc. Lett., 196, 123–134, https://doi.org/10.1016/s0012-821x(01)00609-4, 2002.
Brioude, J., Arnold, D., Stohl, A., Cassiani, M., Morton, D., Seibert, P., Angevine, W., Evan, S., Dingwell, A., Fast, J. D., Easter, R. C., Pisso, I., Burkhart, J., and Wotawa, G.: The Lagrangian particle dispersion model FLEXPART-WRF version 3.1, Geosci. Model Dev., 6, 1889–1904, https://doi.org/10.5194/gmd-6-1889-2013, 2013.
Cassiani, M., Stohl, A., and Brioude, J.: Lagrangian Stochastic Modelling of Dispersion in the Convective Boundary Layer with Skewed Turbulence Conditions and a Vertical Density Gradient: formulation and Implementation in the FLEXPART Model, Bound.-Layer Meteorol., 154, 367–390, 2015.
Cassiani, M., Stohl, A., Olivié, D., Seland, Ø., Bethke, I., Pisso, I., and Iversen, T.: The offline Lagrangian particle model FLEXPART–NorESM/CAM (v1): model description and comparisons with the online NorESM transport scheme and with the reference FLEXPART model, Geosci. Model Dev., 9, 4029–4048, https://doi.org/10.5194/gmd-9-4029-2016, 2016.
Doherty, S. J., Warren, S. G., Grenfell, T. C., Clarke, A. D., and Brandt, R. E.: Light-absorbing impurities in Arctic snow, Atmos. Chem. Phys., 10, 11647–11680, https://doi.org/10.5194/acp-10-11647-2010, 2010.
Publications Copernicus
Special issue
Download
Short summary
We extend the backward modelling technique in the existing model FLEXPART to substances deposited at the Earth’s surface by wet scavenging and dry deposition. This means that for existing measurements of a substance in snow, ice cores or rain samples the source regions can be determined. This will help the interpretation of the measurement as well as gaining information of emission strength at the source of the deposited substance.
We extend the backward modelling technique in the existing model FLEXPART to substances...
Citation
Share