Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 10, issue 12 | Copyright
Geosci. Model Dev., 10, 4619-4646, 2017
https://doi.org/10.5194/gmd-10-4619-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.

Methods for assessment of models 19 Dec 2017

Methods for assessment of models | 19 Dec 2017

A data model of the Climate and Forecast metadata conventions (CF-1.6) with a software implementation (cf-python v2.1)

David Hassell et al.
Related authors
Requirements for a global data infrastructure in support of CMIP6
Venkatramani Balaji, Karl E. Taylor, Martin Juckes, Bryan N. Lawrence, Paul J. Durack, Michael Lautenschlager, Chris Blanton, Luca Cinquini, Sébastien Denvil, Mark Elkington, Francesca Guglielmo, Eric Guilyardi, David Hassell, Slava Kharin, Stefan Kindermann, Sergey Nikonov, Aparna Radhakrishnan, Martina Stockhause, Tobias Weigel, and Dean Williams
Geosci. Model Dev., 11, 3659-3680, https://doi.org/10.5194/gmd-11-3659-2018,https://doi.org/10.5194/gmd-11-3659-2018, 2018
Related subject area
Earth and Space Science Informatics
A run control framework to streamline profiling, porting, and tuning simulation runs and provenance tracking of geoscientific applications
Wendy Sharples, Ilya Zhukov, Markus Geimer, Klaus Goergen, Sebastian Luehrs, Thomas Breuer, Bibi Naz, Ketan Kulkarni, Slavko Brdar, and Stefan Kollet
Geosci. Model Dev., 11, 2875-2895, https://doi.org/10.5194/gmd-11-2875-2018,https://doi.org/10.5194/gmd-11-2875-2018, 2018
An improved logistic regression model based on a spatially weighted technique (ILRBSWT v1.0) and its application to mineral prospectivity mapping
Daojun Zhang, Na Ren, and Xianhui Hou
Geosci. Model Dev., 11, 2525-2539, https://doi.org/10.5194/gmd-11-2525-2018,https://doi.org/10.5194/gmd-11-2525-2018, 2018
High-performance software framework for the calculation of satellite-to-satellite data matchups (MMS version 1.2)
Thomas Block, Sabine Embacher, Christopher J. Merchant, and Craig Donlon
Geosci. Model Dev., 11, 2419-2427, https://doi.org/10.5194/gmd-11-2419-2018,https://doi.org/10.5194/gmd-11-2419-2018, 2018
Global hydro-climatic biomes identified via multi-task learning
Christina Papagiannopoulou, Diego G. Miralles, Matthias Demuzere, Niko E. C. Verhoest, and Willem Waegeman
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-92,https://doi.org/10.5194/gmd-2018-92, 2018
Revised manuscript accepted for GMD
Reverse engineering model structures for soil and ecosystem respiration: the potential of gene expression programming
Iulia Ilie, Peter Dittrich, Nuno Carvalhais, Martin Jung, Andreas Heinemeyer, Mirco Migliavacca, James I. L. Morison, Sebastian Sippel, Jens-Arne Subke, Matthew Wilkinson, and Miguel D. Mahecha
Geosci. Model Dev., 10, 3519-3545, https://doi.org/10.5194/gmd-10-3519-2017,https://doi.org/10.5194/gmd-10-3519-2017, 2017
Cited articles
Baker, A. H., Hammerling, D. M., Mickelson, S. A., Xu, H., Stolpe, M. B., Naveau, P., Sanderson, B., Ebert-Uphoff, I., Samarasinghe, S., De Simone, F., Carbone, F., Gencarelli, C. N., Dennis, J. M., Kay, J. E., and Lindstrom, P.: Evaluating lossy data compression on climate simulation data within a large ensemble, Geosci. Model Dev., 9, 4381–4403, https://doi.org/10.5194/gmd-9-4381-2016, 2016.
Dominico, B. and Nativi, S. (Eds.): CF-netCDF3 Data Model Extension Standard, no. OGC 11-165r2 in Open GIS Standard, Open Geospatial Consortium, 3.1rd Edn., Wayland, MA, USA, 2013.
Eaton, B., Gregory, J., Drach, B., Taylor, K., Hankin, S., Caron, J., Signell, R., Bentley, P., Rappa, G., Höck, H., Pamment, A., and Juckes, M.: NetCDF Climate and Forecast (CF) Metadata Conventions V1.6, available at: http://cfconventions.org/cf-conventions/v1.6.0/cf-conventions.html (last access: 11 December 2017), 2011.
Emmerson, S.: UDUNITS-2 package, available at: http://www.unidata.ucar.edu/software/udunits (last access: 11 December 2017), 2007.
Hassell, D. and Gregory, J.: cf-python, https://doi.org/10.5281/zenodo.832255, 2017.
Publications Copernicus
Download
Short summary
We present a formal data model for version 1.6 of the CF (Climate and Forecast) metadata conventions that provide a description of the physical meaning of geoscientific data and their spatial and temporal properties. We describe the CF conventions and how they lead to our CF data model, and compare it other data models for storing data and metadata. We present cf-python version 2.1: a software implementation of the CF data model capable of manipulating any CF-compliant dataset.
We present a formal data model for version 1.6 of the CF (Climate and Forecast) metadata...
Citation
Share