Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 10, issue 12 | Copyright
Geosci. Model Dev., 10, 4665-4691, 2017
https://doi.org/10.5194/gmd-10-4665-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 22 Dec 2017

Model description paper | 22 Dec 2017

HIMMELI v1.0: HelsinkI Model of MEthane buiLd-up and emIssion for peatlands

Maarit Raivonen et al.
Related authors
Calibrating the sqHIMMELI v1.0 wetland methane emission model with hierarchical modeling and adaptive MCMC
Jouni Susiluoto, Maarit Raivonen, Leif Backman, Marko Laine, Jarmo Makela, Olli Peltola, Timo Vesala, and Tuula Aalto
Geosci. Model Dev., 11, 1199-1228, https://doi.org/10.5194/gmd-11-1199-2018,https://doi.org/10.5194/gmd-11-1199-2018, 2018
Technical note: Comparison of methane ebullition modelling approaches used in terrestrial wetland models
Olli Peltola, Maarit Raivonen, Xuefei Li, and Timo Vesala
Biogeosciences, 15, 937-951, https://doi.org/10.5194/bg-15-937-2018,https://doi.org/10.5194/bg-15-937-2018, 2018
Role of needle surface waxes in dynamic exchange of mono- and sesquiterpenes
Johanna Joensuu, Nuria Altimir, Hannele Hakola, Michael Rostás, Maarit Raivonen, Mika Vestenius, Hermanni Aaltonen, Markus Riederer, and Jaana Bäck
Atmos. Chem. Phys., 16, 7813-7823, https://doi.org/10.5194/acp-16-7813-2016,https://doi.org/10.5194/acp-16-7813-2016, 2016
Impacts of climate and reclamation on temporal variations in CH4 emissions from different wetlands in China: from 1950 to 2010
T. Li, W. Zhang, Q. Zhang, Y. Lu, G. Wang, Z. Niu, M. Raivonen, and T. Vesala
Biogeosciences, 12, 6853-6868, https://doi.org/10.5194/bg-12-6853-2015,https://doi.org/10.5194/bg-12-6853-2015, 2015
Related subject area
Biogeosciences
Implementing the nitrogen cycle into the dynamic global vegetation, hydrology, and crop growth model LPJmL (version 5.0)
Werner von Bloh, Sibyll Schaphoff, Christoph Müller, Susanne Rolinski, Katharina Waha, and Sönke Zaehle
Geosci. Model Dev., 11, 2789-2812, https://doi.org/10.5194/gmd-11-2789-2018,https://doi.org/10.5194/gmd-11-2789-2018, 2018
ORCHIMIC (v1.0), a microbe-mediated model for soil organic matter decomposition
Ye Huang, Bertrand Guenet, Philippe Ciais, Ivan A. Janssens, Jennifer L. Soong, Yilong Wang, Daniel Goll, Evgenia Blagodatskaya, and Yuanyuan Huang
Geosci. Model Dev., 11, 2111-2138, https://doi.org/10.5194/gmd-11-2111-2018,https://doi.org/10.5194/gmd-11-2111-2018, 2018
Soil Methanotrophy Model (MeMo v1.0): a process-based model to quantify global uptake of atmospheric methane by soil
Fabiola Murguia-Flores, Sandra Arndt, Anita L. Ganesan, Guillermo Murray-Tortarolo, and Edward R. C. Hornibrook
Geosci. Model Dev., 11, 2009-2032, https://doi.org/10.5194/gmd-11-2009-2018,https://doi.org/10.5194/gmd-11-2009-2018, 2018
Assimilating solar-induced chlorophyll fluorescence into the terrestrial biosphere model BETHY-SCOPE v1.0: model description and information content
Alexander J. Norton, Peter J. Rayner, Ernest N. Koffi, and Marko Scholze
Geosci. Model Dev., 11, 1517-1536, https://doi.org/10.5194/gmd-11-1517-2018,https://doi.org/10.5194/gmd-11-1517-2018, 2018
A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0
Derek P. Tittensor, Tyler D. Eddy, Heike K. Lotze, Eric D. Galbraith, William Cheung, Manuel Barange, Julia L. Blanchard, Laurent Bopp, Andrea Bryndum-Buchholz, Matthias Büchner, Catherine Bulman, David A. Carozza, Villy Christensen, Marta Coll, John P. Dunne, Jose A. Fernandes, Elizabeth A. Fulton, Alistair J. Hobday, Veronika Huber, Simon Jennings, Miranda Jones, Patrick Lehodey, Jason S. Link, Steve Mackinson, Olivier Maury, Susa Niiranen, Ricardo Oliveros-Ramos, Tilla Roy, Jacob Schewe, Yunne-Jai Shin, Tiago Silva, Charles A. Stock, Jeroen Steenbeek, Philip J. Underwood, Jan Volkholz, James R. Watson, and Nicola D. Walker
Geosci. Model Dev., 11, 1421-1442, https://doi.org/10.5194/gmd-11-1421-2018,https://doi.org/10.5194/gmd-11-1421-2018, 2018
Cited articles
Arah, J. R. M. and Stephen, K. D.: A model of the processes leading to methane emission from peatland – kinetics of CH4 and O2 removal and the role of plant roots, Atmos. Environ., 32, 3257–3264, 1998.
Aurela, M., Riutta, T., Laurila, T., Tuovinen, J.-P., Vesala, T., Tuittila, E.-S., Rinne, J., Haapanala, S., and Laine, J.: CO2 exchange of a sedge fen in southern Finland – the impact of a drought period, Tellus B, 59, 826–837, 2007.
Aurela, M., Lohila, A., Tuovinen, J.-P., Hatakka, J., Riutta, T., and Laurila, T.: Carbon dioxide exchange on a northern boreal fen, Boreal Environ. Res., 14, 699–710, 2009.
Baird, A. J., Beckwith, C. W., and Waldron, S.: Ebullition of methane-containing gas bubbles from near-surface Sphagnum peat, Geophys. Res. Lett., 31, L21505, https://doi.org/10.1029/2004GL021157, 2004.
Publications Copernicus
Download
Short summary
Wetlands are one of the most significant natural sources of the strong greenhouse gas methane. We developed a model that can be used within a larger wetland carbon model to simulate the methane emissions. In this study, we present the model and results of its testing. We found that the model works well with different settings and that the results depend primarily on the rate of input anoxic soil respiration and also on factors that affect the simulated oxygen concentrations in the wetland soil.
Wetlands are one of the most significant natural sources of the strong greenhouse gas methane....
Citation
Share